Book contents
- Frontmatter
- Contents
- Preface
- Contributors
- 1 Small-Scale Statistics and Structure of Turbulence – in the Light of High Resolution Direct Numerical Simulation
- 2 Structure and Dynamics of Vorticity in Turbulence
- 3 Passive Scalar Transport in Turbulence: A Computational Perspective
- 4 A Lagrangian View of Turbulent Dispersion and Mixing
- 5 The Eddies and Scales of Wall Turbulence
- 6 Dynamics of Wall-Bounded Turbulence
- 7 Recent Progress in Stratified Turbulence
- 8 Rapidly-Rotating Turbulence: An Experimental Perspective
- 9 MHD Dynamos and Turbulence
- 10 How Similar is Quantum Turbulence to Classical Turbulence?
- References
6 - Dynamics of Wall-Bounded Turbulence
Published online by Cambridge University Press: 05 February 2013
- Frontmatter
- Contents
- Preface
- Contributors
- 1 Small-Scale Statistics and Structure of Turbulence – in the Light of High Resolution Direct Numerical Simulation
- 2 Structure and Dynamics of Vorticity in Turbulence
- 3 Passive Scalar Transport in Turbulence: A Computational Perspective
- 4 A Lagrangian View of Turbulent Dispersion and Mixing
- 5 The Eddies and Scales of Wall Turbulence
- 6 Dynamics of Wall-Bounded Turbulence
- 7 Recent Progress in Stratified Turbulence
- 8 Rapidly-Rotating Turbulence: An Experimental Perspective
- 9 MHD Dynamos and Turbulence
- 10 How Similar is Quantum Turbulence to Classical Turbulence?
- References
Summary
Introduction
This chapter deals with the dynamics of wall-bounded turbulent flows, with a decided emphasis on the results of numerical simulations. As we will see, part of the reason for that emphasis is that much of the recent work on dynamics has been computational, but also that the companion chapter by Marusic and Adrian (2012) in this volume reviews the results of experiments over the same period.
The first direct numerical simulations (DNS) of wall-bounded turbulence (Kim et al., 1987) began to appear soon after computers became powerful enough to allow the simulation of turbulence in general (Siggia, 1981; Rogallo, 1981). Large-eddy simulations (LES) of wall-bounded flows had been published before (Deardorff, 1970; Moin and Kim, 1982) but, after DNS became current, they were de-emphasized as means of clarifying the flow physics, in part because doubts emerged about the effect of the poorly resolved near-wall region on the rest of the flow. Some of the work summarized below has eased those misgivings, and there are probably few reasons to distrust the information provided by LES on the largest flow structures, but any review of the physical results of numerics in the recent past necessarily has to deal mostly with DNS. Only atmospheric scientists, for whom the prospect of direct simulation remains remote, have continued to use LES to study the mechanics of the atmospheric surface layer (see, for example, Deardorff, 1973; Siebesma et al., 2003). A summary of the early years of numerical turbulence research can be found in Rogallo and Moin (1984) and Moin and Mahesh (1998).
- Type
- Chapter
- Information
- Ten Chapters in Turbulence , pp. 221 - 268Publisher: Cambridge University PressPrint publication year: 2012
References
- 5
- Cited by