Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-21T18:27:36.348Z Has data issue: false hasContentIssue false
This chapter is part of a book that is no longer available to purchase from Cambridge Core

Bibliography

Manu Paranjape
Affiliation:
Université de Montréal
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] S. A., Abel, C.-S., Chu, J., Jaeckel and V. V., Khoze. “SUSY breaking by a metastable ground state: Why the early universe preferred the nonsupersymmetric vacuumJHEP, 01 (2007), p. 089. doi: 10.1088/1126-6708/ 2007/01/089. arXiv: hep-th/0610334 [hep-th].CrossRefGoogle Scholar
[2] M., Abramowitz and I. A., Stegun. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, 1965).
[3] A. A., Abrikosov. “On the magnetic properties of superconductors of the second groupSov. Phys. JETP, 5 (1957). [Zh. Eksp. Teor. Fiz.32,1442(1957)], pp. 1174– 1182.Google Scholar
[4] I. K., Affleck and N. S., Manton. “Monopole pair production in a magnetic fieldNucl. Phys., B194 (1982), pp. 38–64. doi: 10.1016/0550-3213(82)90511-9.CrossRefGoogle Scholar
[5] A., Altland and B. D., Simons. Condensed Matter Field Theory (Cambridge University Press, 2010).
[6] P. W., Anderson. “An approximate quantum theory of the antiferromagnetic ground statePhys. Rev., 86 (5 June 1952), pp. 694–701. doi: 10.1103/PhysRev. 86.694. url: 10.1103/PhysRev.86.694.CrossRef
[7] N. W., Ashcroft and N. D., Mermin. Solid State Physics. HRW International Editions (Holt, Rinehart and Winston, 1976).
[8] M. F., Atiyah and I. M., Singer. “The index of elliptic operators on compact manifoldsBull. Am. Math. Soc., 69 (1969), pp. 422–433. doi: 10.1090/S0002- 9904-1963-10957-X.CrossRefGoogle Scholar
[9] L., Balents. “Spin liquids in frustrated magnetsNature, 464.7286 (Mar. 2010), pp. 199–208. doi: 10.1038/nature08917.CrossRef
[10] A., Banyaga and D., Hurtubise. Lectures on Morse Homology. Texts in the Mathematical Sciences (Springer, 2013).
[11] A., Barone. Superconductive Particle Detectors: Advances in the Physics of Condensed Matter (World Scientific Pub. Co. Inc., 1987).
[12] A. A., Belavin and A. M., Polyakov. “Quantum fluctuations of pseudoparticlesNucl. Phys. B123 (1977), pp. 429–444. doi: 10.1016/0550-3213(77)90175-4.CrossRefGoogle Scholar
[13] F. A., Berezin. “The method of second quantizationPure Appl. Phys., 24 (1966), pp. 1–228.Google Scholar
[14] H., Bethe. “On the theory of metals. 1. Eigenvalues and eigenfunctions for the linear atomic chainZ. Phys., 71 (1931), pp. 205–226. doi: 10.1007/BF01341708.CrossRefGoogle Scholar
[15] K., Binder and A. P., Young. “Spin glasses: Experimental facts, theoretical concepts, and open questionsRev. Mod. Phys., 58 (4 Oct. 1986), pp. 801– 976. doi: 10.1103/RevModPhys.58.801.CrossRef
[16] M., Blasone and P., Jizba. “Nambu–Goldstone dynamics and generalized coherentstate functional integralsJournal of Physics A: Mathematical and Theoretical, 45.24 (2012), p. 244009.Google Scholar
[17] E. B., Bogomolny. “Stability of classical solutionsSov. J. Nucl. Phys., 24 (1976) [Yad. Fiz.24,861(1976)], p. 449.Google Scholar
[18] R., Bott. “An application of the Morse theory to the topology of Liegroups.” English. Bull. Soc. Math. Fr., 84 (1956), pp. 251–281. issn: 0037–9484.Google Scholar
[19] R., Bott. “Morse theory indomitable”. English. Publications Mathématiques de l'IHÉS, 68 (1988), pp. 99–114. url: http://eudml.org/doc/104046.Google Scholar
[20] H.-B., Braun and D., Loss. “Chiral quantum spin solitonsJournal of Applied Physics, 79.8 (1996), pp. 6107–6109. doi: 10.1063/1.362102.CrossRefGoogle Scholar
[21] E., Brézin, J. C. Le, Guillou and J., Zinn-Justin, Phys. Rev. D15 (1977), 1544.
[22] L., Brillouin. “La mécanique ondulatoire de Schrödinger: une méthode générale de resolution par approximations successivesComptes Rendus de líAcadémie des Sciences, 183 (Oct. 1926), pp. 24–26.
[23] C. G., Callan Jr. and S. R., Coleman. “The fate of the false vacuum. 2. First quantum correctionsPhys. Rev., D16 (1977), pp. 1762–1768. doi: 10.1103/ PhysRevD.16.1762.Google Scholar
[24] S., Chadha and P. D., VecchiaZeta function regularization of the quantum fluctuations around the Yang–Mills pseudoparticlePhys. Lett., B72 (1977), pp. 103–108. doi: 10.1016/0370-2693(77)90073-9.CrossRefGoogle Scholar
[25] W., Chen, K., Hida and B. C., Sanctuary. “Ground-state phase diagram of S = 1 XXZ chains with uniaxial single-ion-type anisotropyPhys. Rev. B, 67 (10 Mar. 2003), p. 104401. doi: 10.1103/PhysRevB.67.104401.CrossRef
[26] Y., Choquet-Bruhat, C., DeWitt-Morette and M., Dillard-Bleick. Analysis, Manifolds, and Physics. Analysis, Manifolds, and Physics pt. 1 (North-Holland Publishing Company, 1982).
[27] E. M., Chudnovsky and L., Gunther. “Quantum theory of nucleation in ferromagnetsPhys. Rev. B, 37 (16 June 1988), pp. 9455–9459. doi: 10.1103/ PhysRevB.37.9455.
[28] E. M., Chudnovsky and L., Gunther. “Quantum tunneling of magnetization in small ferromagnetic particlesPhys. Rev. Lett., 60 (8 Feb. 1988), pp. 661– 664. doi: 10.1103/PhysRevLett.60.661.CrossRef
[29] E. M., Chudnovsky and J., Tejada. Lectures on Magnetism. Lectures on Magnetism: With 128 Problems (Rinton Press, 2006).
[30] E. M., Chudnovsky, J., Tejada, C., Calero and F., Macia. Problem Solutions to Lectures on Magnetism by Chudnovsky and Tejada (Rinton Press, 2007).
[31] S., Coleman. Aspects of Symmetry: Selected Erice Lectures (Cambridge University Press, 1988).
[32] S. R., Coleman. “The fate of the false vacuum. 1. Semiclassical theoryPhys. Rev., D15 (1977). [Erratum: Phys. Rev.D16,1248(1977)], pp. 2929–2936. doi: 10.1103/ PhysRevD.15.2929, doi: 10.1103/PhysRevD.16.1248.CrossRefGoogle Scholar
[33] S. R., Coleman and F. D., Luccia. “Gravitational effects on and of vacuum decayPhys. Rev., D21 (1980), p. 3305. doi: 10.1103/PhysRevD.21.3305.CrossRefGoogle Scholar
[34] S. R., Coleman, V., Glaser and A., Martin. “Action minima among solutions to a class of Euclidean scalar field equationsCommun. Math. Phys., 58 (1978), p. 211. doi: 10.1007/BF01609421.CrossRefGoogle Scholar
[35] J. C., Collins and D. E., Soper. “Large order expansion in perturbation theoryAnnals Phys., 112 (1978), pp. 209–234. doi: 10.1016/0003-4916(78)90084-2.CrossRefGoogle Scholar
[36] R. F., Dashen, B., Hasslacher and A., Neveu. “Nonperturbative methods and extended hadron models in field theory. 1. Semiclassical functional methodsPhys. Rev., D10 (1974), p. 4114. doi: 10.1103/PhysRevD.10.4114.CrossRefGoogle Scholar
[37] P. J., Davis. Circulant Matrices. Pure and Applied Mathematics (Wiley, 1979).
[38] J. von, Delft and C. L., Henley. “Destructive quantum interference in spin tunnelling problemsPhys. Rev. Lett., 69 (22 Nov. 1992), pp. 3236– 3239. doi: 10.1103/ PhysRevLett.69.3236.
[39] F., Devreux and J. P., Boucher. “Solitons in Ising-like quantum spin chains in a magnetic field: a second quantization approachJ. Phys. France, 48.10 (1987), pp. 1663–1670. doi: 10.1051/jphys:0198700480100166300.CrossRefGoogle Scholar
[40] P. A. M., Dirac. “The Lagrangian in quantum mechanicsPhys. Z. Sowjetunion, 3 (1933), pp. 64–72.Google Scholar
[41] A. J., Dolgert, S. J. Di, Bartolo and A. T., Dorsey. “Superheating fields of superconductors: Asymptotic analysis and numerical resultsPhys. Rev. B, 53 (9 Mar. 1996), pp. 5650–5660. doi: 10.1103/PhysRevB.53.5650.CrossRef
[42] T., Eguchi, P. B., Gilkey and A. J., Hanson. “Gravitation, gauge theories and differential geometryPhys. Rept., 66 (1980), p. 213. doi: 10.1016/0370- 1573(80)90130-1.CrossRefGoogle Scholar
[43] M., Enz and R., Schilling. “Magnetic field dependence of the tunnelling splitting of quantum spinsJournal of Physics C: Solid State Physics, 19.30 (1986), p. L711.Google Scholar
[44] L. D., Faddeev and V. N., Popov. “Feynman diagrams for the Yang–Mills fieldPhys. Lett., 25B (1967), pp. 29–30. doi: 10.1016/0370-2693(67)90067-6.CrossRefGoogle Scholar
[45] R. P., Feynman. “Space-time approach to nonrelativistic quantum mechanicsRev. Mod. Phys., 20 (1948), pp. 367–387. doi: 10.1103/RevModPhys.20.367.CrossRefGoogle Scholar
[46] R. P., Feynman and A. R., Hibbs. Quantum Mechanics and Path Integrals. International Series in Pure and Applied Physics (McGraw-Hill, 1965).
[47] W., Fischler, V., Kaplunovsky, C., Krishnan, L., Mannelli and M., Torres. “Metastable supersymmetry breaking in a cooling universeJHEP, 03 (2007), p. 107. doi: 10.1088/1126-6708/2007/03/107. arXiv: hep-th/0611018 [hep-th].CrossRefGoogle Scholar
[48] E., Fradkin. Field Theories of Condensed Matter Physics (Cambridge University Press, 2013).
[49] E., Fradkin and M., Stone. “Topological terms in one- and twodimensional quantum Heisenberg antiferromagnetsPhys. Rev. B, 38 (10 Oct. 1988), pp. 7215–7218. doi: 10.1103/PhysRevB.38.7215.CrossRef
[50] K., Fujikawa. “Path integral measure for gauge invariant fermion theoriesPhys. Rev. Lett., 42 (1979), pp. 1195–1198. doi: 10.1103/PhysRevLett.42.1195.CrossRefGoogle Scholar
[51] D. B., Fuks. “Spheres, homotopy groups of the”. In Encyclopedia of Mathematics (2001).
[52] D. A., Garanin. “Spin tunnelling: a perturbative approachJ. Phys. A-Math. Gen., 24.2 (1991), p. L61.Google Scholar
[53] A., Garg and G.-H., Kim. “Macroscopic magnetization tunneling and coherence: Calculation of tunneling-rate prefactorsPhys. Rev. B, 45 (22 June 1992), pp. 12921–12929. doi: 10.1103/PhysRevB.45.12921.CrossRef
[54] H., Georgi and S. L., Glashow. “Unified weak and electromagnetic interactions without neutral currentsPhys. Rev. Lett., 28 (1972), p. 1494. doi: 10.1103/ PhysRevLett.28.1494.Google Scholar
[55] J., Glimm and A., Jaffe. Quantum Physics: A Functional Integral Point of View (Springer 2012). doi: 10.1007/BF02812722.CrossRef
[56] J., Goldstone. “Field theories with superconductor solutionsNuovo Cim., 19 (1961), pp. 154–164. doi: 10.1007/BF02812722.CrossRefGoogle Scholar
[57] D. J., Gross and F., Wilczek. “Ultraviolet behavior of nonabelian gauge theoriesPhys. Rev. Lett., 30 (1973), pp. 1343–1346. doi: 10.1103/PhysRevLett.30.1343.CrossRefGoogle Scholar
[58] D., Haldane. “Large-D, and intermediate-D states in an S =2 quantum spin chain with on-site and XXZ anisotropiesPhys. Soc. Jn., 80.4 (2011), p. 043001. doi: 10.1143/JPSJ.80.043001.CrossRefGoogle Scholar
[59] F. D. M., Haldane. “Nonlinear field theory of large-spin Heisenberg antiferromagnets: semiclassically quantized solitons of the one-dimensional easy-axis Néel statePhys. Rev. Lett., 50 (15 Apr. 1983), pp. 1153–1156. doi: 10.1103/ PhysRevLett.50.1153.
[60] S. W., Hawking and G. F. R., Ellis. The Large Scale Structure of Space-Time. (Cambridge University Press, 2011). doi: 10.1017/CBO9780511524646.CrossRef
[61] P. W., Higgs. “Broken symmetries and the masses of gauge bosonsPhys. Rev. Lett., 13 (1964), pp. 508–509. doi: 10.1103/PhysRevLett.13.508.CrossRefGoogle Scholar
[62] K., Hori, S., Katz, A., Klemm et al. Mirror Symmetry. Vol. 1. Clay Mathematics Monographs (AMS, 2003). url: www.claymath.org/library/monographs/ cmim01.pdf.
[63] L., Hulthén. “Uber has Austauschproblem eines KristallsArkiv Mat. Astron. Fysik, 26A (1938), pp. 1–10.Google Scholar
[64] K. Jain, Rohit. Supersymmetric Schrodinger operators with applications to Morse theory. 2017. arXiv: 1703.06943v2.
[65] A., Jevicki. “Treatment of zero frequency modes in perturbation expansion about classical field configurationsNucl. Phys., B117 (1976), pp. 365–376. doi: 10.1016/0550-3213(76)90403-X.CrossRefGoogle Scholar
[66] B., Julia and A., Zee. “Poles with both magnetic and electric charges in nonabelian gauge theoryPhys. Rev., D11 (1975), pp. 2227–2232. doi: 10.1103/PhysRevD. 11.2227.CrossRefGoogle Scholar
[67] S., Kachru, R., Kallosh, A., Linde and S. P., Trivedi. “De Sitter vacua in string theoryPhys. Rev., D68 (2003), p. 046005. doi: 10.1103/PhysRevD.68.046005. arXiv: hep-th/0301240[hep-th].CrossRefGoogle Scholar
[68] A., Khare and M. B., Paranjape. “Suppression of quantum tunneling for all spins for easy-axis systemsPhys. Rev. B, 83 (17 May 2011), p. 172401. doi: 10.1103/ PhysRevB.83.172401.
[69] T. W. B., Kibble. “Some implications of a cosmological phase transitionPhys. Rept., 67 (1980), p. 183. doi: 10.1016/0370-1573(80)90091-5.CrossRefGoogle Scholar
[70] T. W. B., Kibble. “Topology of cosmic domains and stringsJ. Phys., A9 (1976), pp. 1387–1398. doi: 10.1088/0305-4470/9/8/029.CrossRefGoogle Scholar
[71] G.-H., Kim. “Level splittings in exchange-biased spin tunnelingPhys. Rev. B, 67 (2 Jan. 2003), p. 024421. doi: 10.1103/PhysRevB.67.024421.CrossRef
[72] G.-H., Kim. “Tunneling in a single-molecule magnet via anisotropic exchange interactionsPhys. Rev. B, 68 (14 Oct. 2003), p. 144423. doi: 10.1103/PhysRevB. 68.144423.CrossRef
[73] A., Kitaev. “Anyons in an exactly solved model and beyondAnn. Phys., 321.1 (2006), pp. 2–111. doi: 10.1016/j.aop.2005.10.005.CrossRefGoogle Scholar
[74] J. A., Kjäll, M., Zalatel, R., Mong, J., Bardarson and F., Pollmann. “Phase diagram of the anisotropic spin-2 XXZ model: infinite-system density matrix renormalization group studyPhys. Rev. B, 87 (23 June 2013), p. 235106. doi: 10.1103/ PhysRevB.87.235106.
[75] J. R., Klauder. “Path integrals and stationary-phase approximationsPhys. Rev. D, 19 (8 Apr. 1979), pp. 2349–2356. doi: 10.1103/PhysRevD.19.2349.CrossRef
[76] H., Kleinert. Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets, 5th Edition (World Scientific Publishing Co., 2009). doi: 10.1142/7305.CrossRef
[77] H. A., Kramers. “Wellenmechanik und halbzahlige QuantisierungZ. Phys., 39 (Oct. 1926), pp. 828–840. doi: 10.1007/BF01451751.CrossRef
[78] H. A., Kramers, “Théorie générale de la rotation paramagnétique dans les cristauxProc. Acad. Sci. Amsterdam, 33 (1930), p. 959.Google Scholar
[79] B., Kumar, M. B., Paranjape and U. A., Yajnik. “Fate of the false monopoles: induced vacuum decayPhys. Rev., D82 (2010), p. 025022. doi: 10.1103/Phys- RevD.82.025022. arXiv: 1006.0693[hep-th].CrossRefGoogle Scholar
[80] B., Kumar and U., Yajnik. “Graceful exit via monopoles in a theory with OíRaifeartaigh type supersymmetry breakingNucl. Phys., B831 (2010), pp. 162–177. doi: 10.1016/j.nuclphysb.2010.01.011. arXiv: 0908.3949[hep-th].CrossRefGoogle Scholar
[81] B., Kumar and U. A., Yajnik. “Stability of false vacuum in supersymmetric theories with cosmic stringsPhys. Rev., D79 (2009), p. 065001. doi: 10.1103/PhysRevD. 79.065001. arXiv: 0807.3254[hep-th].CrossRefGoogle Scholar
[82] Laurascudder. Baryon Decuplet ó Wikipedia, The Free Encyclopedia. 2007.
[83] Laurascudder. Baryon Octet ó Wikipedia, The Free Encyclopedia. 2007.
[84] Laurascudder. Meson Octet ó Wikipedia, The Free Encyclopedia. 2007.
[85] B.-H., Lee, W., Lee, R., MacKenzie et al. “Tunneling decay of false vorticesPhys. Rev., D88 (2013), p. 085031. doi: 10.1103/PhysRevD.88.085031. arXiv: 1308. 3501[hep-th].CrossRefGoogle Scholar
[86] A. J., Leggett. “A theoretical description of the new phases of liquid 3HeRev. Mod. Phys., 47 (2 Apr. 1975), pp. 331–414. doi: 10.1103/RevModPhys.47.331.CrossRef
[87] E. H., Lieb. “The classical limit of quantum spin systemsComm. Math. Phys., 31.4 (1973), pp. 327–340. url: http://projecteuclid.org/euclid.cmp/1103859040.Google Scholar
[88] D., Loss, D. P., DiVincenzo and G., Grinstein. “Suppression of tunneling by interference in half-integer-spin particlesPhys. Rev. Lett., 69 (22 Nov. 1992), pp. 3232–3235. doi: 10.1103/PhysRevLett.69.3232.CrossRef
[89] Y., Matsumoto. An Introduction to Morse Theory. Trans. Kiki Hudson and Masahico Saito (American Mathematical Society, 2002).
[90] F., Meier, J., Levy and D., Loss. “Quantum computing with antiferromagnetic spin clustersPhys. Rev. B, 68 (13 Oct. 2003), p. 134417. doi: 10.1103/PhysRevB. 68.134417.CrossRef
[91] F., Meier and D., Loss. “Electron and nuclear spin dynamics in antiferromagnetic molecular ringsPhys. Rev. Lett., 86 (23 June 2001), pp. 5373–5376. doi: 10. 1103/PhysRevLett.86.5373.
[92] F., Meier and D., Loss. “Thermodynamics and spin-tunneling dynamics in ferric wheels with excess spinPhys. Rev. B, 64 (22 Nov. 2001), p. 224411. doi: 10. 1103/PhysRevB.64.224411.
[93] H.-J., Mikeska and M., Steiner. “Solitary excitations in one-dimensional magnetsAdv. Phys., 40.3 (1991), pp. 191–356. doi: 10.1080/00018739100101492.CrossRefGoogle Scholar
[94] J., Milnor. Morse Theory (AM-51). Annals of Mathematics Studies (Princeton University Press, 2016).
[95] S. E., Nagler, W. J. L., Buyers, R. L., Armstrong and B., Briat. “Propagating domain walls in CsCoBr3Phys. Rev. Lett., 49 (8 Aug. 1982), pp. 590–592. doi: 10.1103/ PhysRevLett.49.590.
[96] H. B., Nielsen and P., Olesen. “Vortex line models for dual stringsNucl. Phys. B, 61 (1973), pp. 45–61. doi: 10.1016/0550-3213(73)90350-7.CrossRefGoogle Scholar
[97] S. P., Novikov. “The Hamiltonian formalism and a many valued analog of Morse theoryUsp. Mat. Nauk, 37N5.5 (1982). [Russ. Math. Surveys(1982),37(5):1], pp. 3–49. doi: 10.1070/RM1982v037n05ABEH004020.CrossRefGoogle Scholar
[98] F. R., Ore Jr. “Quantum field theory about a Yang–Mills pseudoparticlePhys. Rev. D, 15 (1977), p. 470. doi: 10.1103/PhysRevD.15.470.CrossRefGoogle Scholar
[99] S. A., Owerre and M. B., Paranjape. “Macroscopic quantum spin tunneling with two interacting spinsPhys. Rev. B, 88 (22 Dec. 2013), p. 220403. doi: 10.1103/ PhysRevB.88.220403.
[100] A., Perelomov. Generalized Coherent States and their Applications (Springer- Verlag New York Inc., Jan. 1986).
[101] M. E., Peskin and D. V., Schroeder. An Introduction to Quantum Field Theory (Addison-Wesley, 1995).
[102] H. D., Politzer. “Reliable perturbative results for strong interactions?Phys. Rev. Lett., 30 (26 June 1973), pp. 1346–1349. doi: 10.1103/PhysRevLett.30.1346.CrossRef
[103] A. M., Polyakov. “Quark confinement and topology of gauge groupsNucl. Phys. B, 120 (1977), pp. 429–458. doi: 10.1016/0550-3213(77)90086-4.CrossRefGoogle Scholar
[104] M. K., Prasad and C. M., Sommerfield. “An exact classical solution for the ít Hooft monopole and the Julia-Zee dyonPhys. Rev. Lett., 35 (1975), pp. 760–762. doi: 10.1103/PhysRevLett.35.760.CrossRefGoogle Scholar
[105] K., Pretzl. “Superconducting granule detectorsJ. Low Temp. Phys., 93.3 (1993), pp. 439–448. issn: 1573–7357. doi: 10.1007/BF00693458.CrossRefGoogle Scholar
[106] J. M., Radcliffe. “Some properties of coherent spin statesJ. Phys. A: General Physics, 4.3 (1971), p. 313. doi: 10.1088/0305-4470/4/3/009.CrossRefGoogle Scholar
[107] M., Reed and B., Simon. I: Functional Analysis. Methods of Modern Mathematical Physics (Elsevier Science, 1981).
[108] H. J., Schulz. “Phase diagrams and correlation exponents for quantum spin chains of arbitrary spin quantum numberPhys. Rev. B, 34 (9 Nov. 1986), pp. 6372– 6385. doi: 10.1103/PhysRevB.34.6372.CrossRef
[109] J., Schwinger. “On gauge invariance and vacuum polarizationPhys. Rev., 82 (5 June 1951), pp. 664–679. doi: 10.1103/PhysRev.82.664.CrossRef
[110] J., Simon, W., Bakr and R., Ma. “Quantum simulation of antiferromagnetic spin chains in an optical latticeNature, 472.7343 (Apr. 2011), pp. 307–312. doi: 10. 1038/nature09994.
[111] P. J., Steinhardt. “Monopole dissociation in the early universePhys. Rev. D, 24 (1981), p. 842. doi: 10.1103/PhysRevD.24.842.CrossRefGoogle Scholar
[112] G. 't, Hooft. “Computation of the quantum effects due to a four-dimensional psuedoparticlePhys. Rev. D, 14 (12 Dec. 1976), pp. 3432–3450. doi: 10.1103/ PhysRevD.14.3432.
[113] J., Ummethum, J., Nehrkorn, S., Mukherjee et al. “Discrete antiferromagnetic spinwave excitations in the giant ferric wheel Fe18Phys. Rev. B, 86 (10 Sept. 2012), p. 104403. doi: 10.1103/PhysRevB.86.104403.CrossRef
[114] J. H. Van, Vleck. “On sigma-type doubling and electron spin in the spectra of diatomic moleculesPhys. Rev., 33 (1929), pp. 467–506. doi: 10.1103/PhysRev. 33.467.CrossRefGoogle Scholar
[115] J., Villain. “Propagative spin relaxation in the Ising-like antiferromagnetic linear chainPhysica B+C, 79.1 (1975), pp. 1–12. issn: 0378-4363. doi: 10.1016/0378- 4363(75)90101-1.CrossRefGoogle Scholar
[116] O., Waldmann, C., Dobe, H., Güdel and H., Mutka. “Quantum dynamics of the Néel vector in the antiferromagnetic molecular wheel CsFe8Phys. Rev. B, 74 (5 Aug. 2006), p. 054429. doi: 10.1103/PhysRevB.74.054429.CrossRef
[117] S., Weinberg. “Dynamical approach to current algebraPhys. Rev. Lett., 18 (1967), pp. 188–191. doi: 10.1103/PhysRevLett.18.188.CrossRefGoogle Scholar
[118] S., Weinberg. “The U(1) problemPhys. Rev. D, 11 (1975), pp. 3583–3593. doi: 10.1103/PhysRevD.11.3583.CrossRefGoogle Scholar
[119] G., Wentzel. “Eine Verallgemeinerung der Quantenbedingungen für die Zwecke der WellenmechanikZ. Phys., 38 (June 1926), pp. 518–529. doi: 10.1007/ BF01397171.
[120] J., Wess and B., Zumino. “Consequences of anomalous Ward identitiesPhys. Lett. B, 37 (1971), pp. 95–97. doi: 10.1016/0370-2693(71)90582-X.CrossRefGoogle Scholar
[121] N., Wiener. “Differential spaceJ. Math. and Phys., 2 (1923), pp. 132–174.Google Scholar
[122] E., Witten. “Baryons in the 1/n ExpansionNucl. Phys. B, 160 (1979), pp. 57– 115. doi: 10.1016/0550-3213(79)90232-3.CrossRefGoogle Scholar
[123] E., Witten. “Constraints on supersymmetry breakingNucl. Phys. B, 202 (1982), p. 253. doi: 10.1016/0550-3213(82)90071-2.CrossRefGoogle Scholar
[124] E., Witten. “Dynamical breaking of supersymmetryNucl. Phys. B, 188 (1981), p. 513. doi: 10.1016/0550-3213(81)90006-7.CrossRefGoogle Scholar
[125] E., Witten. “Supersymmetry and Morse theoryJ. Diff. Geom., 17.4 (1982), pp. 661–692.Google Scholar
[126] U. A., Yajnik. “Phase transitions induced by cosmic stringsPhys. Rev. D, 34 (1986), pp. 1237–1240. doi: 10.1103/PhysRevD.34.1237.CrossRefGoogle Scholar
[127] W.-M., Zhang, D. H., Feng and R., Gilmore. “Coherent states: Theory and some applicationsRev. Mod. Phys., 62 (4 Oct. 1990), pp. 867–927. doi: 10.1103/ RevModPhys.62.867.
[128] J., Zinn-Justin. “Perturbation series at large orders in quantum mechanics and field theories: Application to the problem of resummationPhysics Reports, 70.2 (1981), pp. 109–167. issn: 0370-1573. doi: 10.1016/0370-1573(81)90016-8.CrossRefGoogle Scholar
[129] W. H., Zurek. “Cosmic strings in laboratory superfluids and the topological remnants of other phase transitionsActa Phys. Pol. B, 24 (1993), pp. 1301–1311.Google Scholar
[130] W. H., Zurek. “Cosmological experiments in superfluid helium?Nature 317 (1985), pp. 505–508. doi: 10.1038/317505a0.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Bibliography
  • Manu Paranjape, Université de Montréal
  • Book: The Theory and Applications of Instanton Calculations
  • Online publication: 04 November 2017
  • Chapter DOI: https://doi.org/10.1017/9781316658741.016
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Bibliography
  • Manu Paranjape, Université de Montréal
  • Book: The Theory and Applications of Instanton Calculations
  • Online publication: 04 November 2017
  • Chapter DOI: https://doi.org/10.1017/9781316658741.016
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Bibliography
  • Manu Paranjape, Université de Montréal
  • Book: The Theory and Applications of Instanton Calculations
  • Online publication: 04 November 2017
  • Chapter DOI: https://doi.org/10.1017/9781316658741.016
Available formats
×