Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-08T05:17:56.567Z Has data issue: false hasContentIssue false

2 - Thermodynamics of Metal Nanoparticles

Published online by Cambridge University Press:  26 October 2017

Guillaume Baffou
Affiliation:
Institut Fresnel, CNRS, University of Aix-Marseille
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Thermoplasmonics
Heating Metal Nanoparticles Using Light
, pp. 36 - 80
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Adleman, J.R., Boyd, D.A., Goodwin, D.G., and Psaltis, D. 2009. Heterogenous Catalysis Mediated by Plasmon Heating. Nano Lett., 9(12), 4417–4423.Google Scholar
[2] Arbouet, A., Voisin, C., Christofilos, D., Langot, P., Del Fatti, N., Vallée, F., Lermé, J., Celep, G., Cottancin, E., Gaudry, M., Pellarin, M., Broyer, M., Maillard, M., Pileni, M.P., and Treguer, M. 2003. Electron–Phonon Scattering in Metal Clusters. Phys. Rev. Lett., 90(17), 177401.Google Scholar
[3] Baffou, G., and Rigneault, H. 2011. Femtosecond-Pulsed Optical Heating of Gold Nanoparticles. Phys. Rev. B, 84, 035415.Google Scholar
[4] Baffou, G., Girard, C., and Quidant, R. 2010a. Mapping Heat Origin in Plasmonics Structures. Phys. Rev. Lett., 104, 136805.Google Scholar
[5] Baffou, G., Quidant, R., and García de Abajo, F.J. 2010b. Nanoscale Control of Optical Heating in Complex Plasmonic Systems. ACS Nano, 4, 709.Google Scholar
[6] Baffou, G., Quidant, R., and Girard, C. 2010c. Thermoplasmonics Modeling: a Green's Function Approach. Phys. Rev. B, 82, 165424.Google Scholar
[7] Baffou, G., Berto, P., Bermúdez Ureña, E., Quidant, R., Monneret, S., Polleux, J., and Rigneault, H. 2013. Photoinduced Heating of Nanoparticle Arrays. ACS Nano, 7(8), 6478–6488.Google Scholar
[8] Baffou, G., Bermúdez Ureña, E., Berto, P., Monneret, S., Quidant, R., and Rigneault, H. 2014. Deterministic Temperature Shaping using Plasmonic Nanoparticle Assemblies. Nanoscale, 6, 8984–8989.Google Scholar
[9] Berto, P., Mohamed, M.S.A., Rigneault, H., and Baffou, G. 2014. Time-Harmonic Optical Heating of Plasmonic Nanoparticles. Phys. Rev. B, 90, 035439.Google Scholar
[10] Boyer, D., Tamarat, P., Maali, A., Lounis, B., and Orrit, M. 2002. Photothermal Imaging of Nanometer-Sized Metal Particles Among Scatterers. Science, 297, 1160.Google Scholar
[11] Christopher, P., Xin, H., and Linic, S. 2011. Visible-Light-Enhanced Catalytic Oxidation Reactions on Plasmonic Silver Nanostructures. Nature Chem., 3, 467–472.Google Scholar
[12] Donner, J.S., Baffou, G., McCloskey, D., and Quidant, R. 2011. Plasmon-Assisted Optofluidics. ACS Nano, 5, 5457–5462.Google Scholar
[13] Gaiduk, A., Ruijgrok, P.V., Yorulmaz, M., and Orrit, M. 2010. Detection Limits in Photothermal Microscopy. Chem. Sci., 1, 343.Google Scholar
[14] Govorov, A.O., Zhang, W., Skeini, T., Richardson, H., Lee, J., and Kotov, N.A. 2006. Gold Nanoparticle Ensembles as Heaters and Actuators: Melting and Collective Plasmon Resonances. Nanoscale Res. Lett., 1, 84.Google Scholar
[15] Grua, P., Morreeuw, J.P., Bercegol, H., Jonusauskas, G., and Vallée, F. 2003. Electron Kinetics and Emission for Metal Nanoparticles Exposed to Intense Laser Pulses. Phys. Rev. B, 68, 035424.Google Scholar
[16] Heber, A., Selmke, M., and Cichos, F. 2015. Thermal Diffusivity Measured Using a Single Plasmonic Nanoparticle. Phys. Chem. Chem. Phys., 17, 20868.Google Scholar
[17] Hodak, J.H., Henglein, A., and Hartland, G.V. 1999. Size Dependent Properties of Au Particles: Coherent Excitation and Dephasing of Acoustic Vibrational Modes. J. Chem. Phys., 111, 8613.Google Scholar
[18] Hodak, J.H., Henglein, A., and Hartland, G.V. 2000. Electron–Phonon Coupling Dynamics in Very Small (between 2 and 8 nm Diameter) Au Nanoparticles. J. Chem. Phys., 112, 5942.Google Scholar
[19] Hu, M., and Hartland, G.V. 2002. Heat Dissipation for Au Particles in Aqueous Solution: Relaxation Time versus Size. J. Phys. Chem. B, 106, 7029.Google Scholar
[20] Huang, W., Qian, W., El-Sayed, M.A., Ding, Y., and Wang, Z.L. 2007. Effect of Lattice Crystallinity on the Electron–Phonon Relaxation Rates in Gold Nanoparticles. J. Phys. Chem. C, 111, 10751.Google Scholar
[21] Inouye, H., Tanaka, K., Tanahashi, I., and Hirao, K. 1998. Ultrafast Dynamics of Nonequilibirium Electrons in a Gold Nanoparticle System. Phys. Rev. B, 57, 11334.Google Scholar
[22] Jackson, J.D. 1999. Classical Electrodynamics . Wiley.
[23] Katayama, T., Setoura, K., Werner, D., Miyasaka, H., and Hashimoto, S. 2014. Picosecond-to-Nanosecond Dynamics of Plasmonic Nanobubbles from Pump Probe Spectral Measurements of Aqueous Colloidal Gold Nanoparticles. Langmuir, 30, 9504–9513.Google Scholar
[24] Keblinski, P., Cahill, D.G., Bodapati, A., Sullivan, C.R., and Taton, T.A. 2006. Limits of Localized Heating by Electromagnetically Excited Nanoparticles. J. Appl. Phys., 100, 054305.Google Scholar
[25] Letfullin, R.R., George, T.F., Duree, G.C., and Bollinger, B.M. 2008. Ultrashort Laser Pulse Heating of Nanoparticles: Comparison of Theoretical Approaches. Adv. Opt. Technol., 2008, 251718.Google Scholar
[26] Link, S., Burda, C., Wang, Z.L., and El-Sayed, M.A. 1999. Electron Dynamics in Gold and Gold–Silver Alloy Nanoparticles: the Influence of a Nonequilibrium Electron Distribution and the Size Dependence of the Electron–Phonon Relaxation. J. Chem. Phys., 111, 1255.Google Scholar
[27] Metwally, K., Mensah, S., and Baffou, G. 2015. Fluence Threshold for Photothermal Bubble Generation Using Plasmonic Nanoparticles. J. Phys. Chem. C, 119, 28586. 28596.Google Scholar
[28] Mukherjee, S., Zhou, L., Goodman, A.M., Large, N., Ayala-Orozco, C., Zhang, Y., Nordlander, P., and Halas, N.J. 2013. Hot-Electron-Induced Dissociation of H2 on Gold Nanoparticles Supported on SiO2. J. Am. Chem. Soc., 136, 64–67.Google Scholar
[29] Polleux, J., Rasp, M., Louban, I., Plath, N., Feldhoff, A., and Spatz, J.P. 2011. Benzyl Alcohol and Block Copolymer Micellar Lithography: A Versatile Route to Assembling Gold and in Situ Generated Titania Nanoparticles into Uniform Binary Nanoarrays. ACS Nano, 5(8), 6355–6364.Google Scholar
[30] Richardson, H.H., Carlson, M.T., Tandler, P.J., Hernandez, P., and Govorov, A.O. 2009. Experimental and Theoretical Studies of Light-to-Heat Conversion and Collective Heating Effects in Metal Nanoparticle Solutions. Nano Lett., 9, 1139.Google Scholar
[31] Setoura, K., Okada, Y., Werner, D., and Hashimoto, S. 2013. Observation of Nanoscale Cooling Effects by Substrates and the Surrounding Media for Single Gold Nanoparticles under CW-Laser Illumination. ACS Nano, 7(9), 7874–7885.Google Scholar
[32] Vásquez Vásquez, C., Vaz, B., Giannini, V., Pérez-Lorenzo, M., Alvarez-Puebla, R.A., and Correa-Duarte, M.A. 2013. Nanoreactors for Simultaneous Remote Thermal Activation and Optical Monitoring of Chemical Reactions. J. Am. Chem. Soc., 135, 13616–13619.Google Scholar
[33] Volz, S. (ed). 2007. Microscale and Nanoscale Heat Transfer . Springer.

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×