Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T10:40:12.489Z Has data issue: false hasContentIssue false

Part II - Doing Environmental Science

Published online by Cambridge University Press:  23 April 2021

Tara Ivanochko
Affiliation:
University of British Columbia, Vancouver
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Agarwal, A., Mangal, A., Satsangi, A. et al. (2017). Characterization, sources and health risk analysis of PM2.5 bound metals during foggy and non-foggy days in sub-urban atmosphere of Agra. Atmos. Res., 197: 121131. DOI: 10.1016/j.atmosres.2017.06.027.CrossRefGoogle Scholar
Danovaro, R., Bongiorni, L., Corinaldesi, C. et al. (2008). Sunscreens cause coral bleaching by promoting viral infections. Environ. Health Perspect., 116 (4): 441447. DOI: 10.1289/ehp.10966.CrossRefGoogle ScholarPubMed
Teslić, N., Vujadinović, M., Ruml, M. et al. (2015). Climatic shifts in high quality wine production areas, Emilia Romagna, Italy, 1961–2015. Clim. Res., 73: 195206. DOI: 10.3354/cr01468.CrossRefGoogle Scholar

References

Agarwal, A., Mangal, A., Satsangi, A. et al. (2017). Characterization, sources and health risk analysis of PM2.5 bound metals during foggy and non-foggy days in sub-urban atmosphere of Agra. Atmos. Res., 197: 121131. DOI: 10.1016/j.atmosres.2017.06.027.CrossRefGoogle Scholar
Danovaro, R., Bongiorni, L., Corinaldesi, C. et al. (2008). Sunscreens cause coral bleaching by promoting viral infections. Environ. Health Perspect., 116 (4): 441447. DOI: 10.1289/ehp.10966.CrossRefGoogle ScholarPubMed
Teslić, N., Vujadinović, M., Ruml, M. et al. (2015). Climatic shifts in high quality wine production areas, Emilia Romagna, Italy, 1961–2015. Clim. Res., 73: 195206. DOI: 10.3354/cr01468.CrossRefGoogle Scholar

References

Ahn, J., Brook, E. J., Mitchell, L. et al. (2012). Atmospheric CO2 over the last 1000 years: A high‐resolution record from the West Antarctic Ice Sheet (WAIS) Divide ice core. Global Biogeochemical Cycles 26: GB2027. https://doi.org/10.1029/2011GB004247CrossRefGoogle Scholar
Barnola, J. M., Raynola, D., Korotkevich, Y. S., and Lorius, C. (1987). Vostok ice core provides 160,000-year record of atmospheric CO2. Nature, 329: 408414.CrossRefGoogle Scholar
Bereiter, B., Eggleston, S., Schmitt, J. et al. (2015). Revision of the EPICA Dome C CO2 record from 800 to 600 kyr before present. Geophys. Res. Lett., 42: 542549. DOI: 10.1002/2014GL061957.CrossRefGoogle Scholar
Etheridge, D. M., Steele, L. P., Langenfelds, R. L. et al. (1996). Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn. J. Geophys. Res., 101: 41154128.CrossRefGoogle Scholar
Keeling, C. D., Piper, S. C., Bacastow, R. B. et al. (2001). Exchanges of atmospheric CO2 and 13CO2 with the terrestrial biosphere and oceans from 1978 to 2000. I. Global aspects, SIO Reference Series, No. 01-06, Scripps Institution of Oceanography, San Diego, 88pp.Google Scholar
Luthi, D., Le Floch, M., Bereiter, B. et al. (2008). High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature, 45: 379382. DOI: 10.1038/nature06949.CrossRefGoogle Scholar
Siegenthaler, U., Stocker, T. F., Monnin, E. et al. (2005). Stable carbon cycle–climate relationship during the Late Pleistocene. Science, 310: 13131317.CrossRefGoogle ScholarPubMed

Reference

Keeling, C. D., Piper, S. C., Bacastow, R. B. et al. (2001). Exchanges of atmospheric CO2 and 13CO2 with the terrestrial biosphere and oceans from 1978 to 2000. I. Global aspects, SIO Reference Series, No. 01-06, Scripps Institution of Oceanography, San Diego, CA, 88pp.Google Scholar

Reference

Keeling, C. D., Piper, S. C., Bacastow, R. B. et al. (2001). Exchanges of atmospheric CO2 and 13CO2 with the terrestrial biosphere and oceans from 1978 to 2000. I. Global aspects, SIO Reference Series, No. 01-06, Scripps Institution of Oceanography, San Diego, CA, 88pp.Google Scholar

References

Keeling, C. D., Piper, S. C., Bacastow, R. B. et al. (2001). Exchanges of atmospheric CO2 and 13CO2 with the terrestrial biosphere and oceans from 1978 to 2000. I. Global aspects, SIO Reference Series, No. 01-06, Scripps Institution of Oceanography, San Diego, CA, 88pp.Google Scholar
Krivanek, J. and Whitehouse, T. (2017). 2017 In-season Escapement Estimates of Fraser River Salmon at Qualark Dual Frequency Identification Sonar (DIDSON) Site with Test Fishing Results and Species Apportionment. 2017 Project Report to the Southern Boundary Restoration and Enhancement Fund. Fisheries and Oceans Canada. Available at www.psc.org/Google Scholar

Reference

Keeling, C. D., Piper, S. C., Bacastow, R. B. et al. (2001). Exchanges of atmospheric CO2 and 13CO2 with the terrestrial biosphere and oceans from 1978 to 2000. I. Global aspects, SIO Reference Series, No. 01-06, Scripps Institution of Oceanography, San Diego, CA, 88pp.Google Scholar

References

Ciais, P., Sabine, C., Bala, G. et al. (2013). Carbon and Other Biogeochemical Cycles. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Stocker, T. F., Qin, D., Plattner, G.-K. et al. (eds.). Cambridge University Press, Cambridge, UK, and New York.Google Scholar
Keeling, C. D., Piper, S. C., Bacastow, R. B. et al. (2001). Exchanges of atmospheric CO2 and 13CO2 with the terrestrial biosphere and oceans from 1978 to 2000. I. Global aspects, SIO Reference Series, No. 01-06, Scripps Institution of Oceanography, San Diego, CA, 88pp.Google Scholar
US Department of Energy, Carbon Dioxide Information Analysis Centre. (2018). http://cdiac.ess-dive.lbl.gov/trends/emis/meth_reg.html. Last accessed September 4, 2018.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×