Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-11T23:36:19.876Z Has data issue: false hasContentIssue false

9 - Dynamical and Coordinate Timescales

Published online by Cambridge University Press:  01 October 2018

Dennis D. McCarthy
Affiliation:
United States Naval Observatory
P. Kenneth Seidelmann
Affiliation:
University of Virginia
Get access

Summary

With the recognition of the problems with Ephemeris Time and the need to make changes in the celestial reference system in 1976, improved dynamical timescales continuous with Ephemeris Time and consistent with the theory of relativity were developed. Dynamical time is understood as the time-like argument of dynamical theories and the independent variable of the equations of motion of solar system bodies. In 1976, Terrestrial Dynamical Time (TDT) and Barycentric Dynamical Time (TDB) were introduced. Problems with the definition of TDT and TDB and the need for a new reference system based on accurate observations of distant radio sources were recognized. So Terrestrial Time (TT), Geocentric Coordinate Time (TCG), and Barycentric Coordinate Time (TCB) were introduced, and TDB was redefined. Barycentric Ephemeris Time (Teph) was officially recognized. Ephemeris Time Revised is still necessary for timescales prior to 1956. Relativistic equations specify the relationships between the different timescales.
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arias, E. F. (2013). Atomic Time Scales for the 21st Century. RevMexAA(Serie de Conferencias, 43, 29.Google Scholar
The Astronomical Almanac. Washington, DC: US Government Printing Office.Google Scholar
Audoin, C. & Guinot, B. (2001). The Measurement of Time. Cambridge: Cambridge University Press.Google Scholar
Bureau International des Poids et Mesures (2014). The International System of Units (SI).Google Scholar
Fairhead, L. & Bretagnon, P. (1990). An Analytical Formula for the Time Transformation TB-TT. Astron. Astrophys., 229, 240.Google Scholar
Fairhead, L. Bretagnon, P., & Lestrade, J. F. (1988).The Time Transformation TDB-TDT: An Analytical Formula and Related Problem of Convention. In Babcock, A. K. & Wilkins, G. A., eds., The Earth Rotation and Reference Frames for Geodesy and Geodynamics. Dordrecht: Kluwer, 419.Google Scholar
Fricke, W., Schwan, H., & Lederle, T. (1988). Fifth Fundamental Catalogue, Part I. Heidelberg: Veröff. Astron. Rechen Inst.Google Scholar
Fukushima, T. (1995). Time Ephemeris, Astron. Astrophys. 294, 895–890.Google Scholar
Guinot, B. & Seidelmann, P. K. (1988). Time Scales: Their History, Definition, and Interpretation. Astron. Astrophys. 194, 304308.Google Scholar
Hirayama, T., Kinoshita, H., Fujimoto, M.-K., & Fukushima, T. (1987). Analytical Expression of TDB-TDT. Proc. IAG Symposia, IUGG XIX General Assembly, Vancouver, August 10–33, 91.Google Scholar
Hughes, J. A., Smith, C. A., & Kaplan, G. H. (1991). IAU Proc. 127th Colloquium, Reference Systems. Washington, DC: US Naval Observatory.Google Scholar
Irwin, A. W. & Fukushima, T. (1999). A Numerical Time Ephemeris of the Earth. Astron. Astrophys., 348, 642.Google Scholar
Kaplan, G. H. (1981). The IAU Resolutions on Astronomical Reference System, Time Scales, and the Fundamental Reference Frames. USNO Circular 163. Washington, DC: US Naval Observatory.Google Scholar
Klioner, S. A. (2008). Relativistic Scaling of Astronomical Quantities and the System of Astronomical Units. Astron. Astrophys., 478, 951958.Google Scholar
Klioner, S. A., Capitaine, N., Folkner, W. M., Guinot, B., Huang, T.-Y., Kopeikin, S., Pitjeva, E., Seidelmann, P. K., & Soffel, M. (2009). Units of Relativistic Time Scales and Associated Quantities. In Klioner, S. A., Seidelmann, P. K., & Soffel, M. H., eds., Relativity in Fundamental Astronomy, Proceedings IAU Symposium No 261. Cambridge: Cambridge University Press, pp. 7984.Google Scholar
McCarthy, D. D. & Petit, G. P., eds. (2004). IERS Conventions (2003), IERS Technical Note 32, Frankfurt am Main: Verlag des Bundesamts für Kartographie und Geodäsie.Google Scholar
Moisson, X. & Bretagnon, P. (2001). Analytical Planetary Solution VSOP2000. Celest. Mech. & Dynam. Astron. 80, 205213.Google Scholar
Moyer, T. D. (1981). Transformations from Proper Time on Earth to Coordinate Time in Solar System Barycentric Space-Time Frame of Reference. Celestial Mechanics 23, 3356 and 5768.Google Scholar
Nelson, R. A., McCarthy, D. D., Malys, S., Levine, J., Guinot, B., Fliegel, H. F., Beard, R. L., & Bartholomew, T. R. (2001). The Leap Second: Its History and Possible Future. Metrologia, 38, 509529.Google Scholar
Petit, G. & Arias, F.(2015). Long Term Stability of Atomic Time Scales. Highlights of Astronomy, 16, 209.Google Scholar
Petit, G. & Luzum, B., eds. (2010). IERS Conventions (2010). Verlag des Bundesamts für Kartographie und Geodäsie: Frankfurt am Main.Google Scholar
Seidelmann, P. K. & Fukushima, T. (1992). Why New Time Scales? Astron. Astrophys., 265, 833838.Google Scholar
Soffel, M., Klioner, S. A., Petit, G., Wolf, P., Kopeikin, S. M., Bretagnon, P., Brumberg, V. A., Capitaine, N., Damour, T., Fukushima, T., Guinot, B., Huang, T., Lindegren, L., Ma, C., Nordtvedt, K., Ries, J., Seidelmann, P. K., Vokrouhlicky, D., Will, C., & Xu, Ch. (2003). The IAU 2000 Resolutions for Astrometry, Celestial Mechanics, and Metrology in the Relativistic Framework: Explanatory Supplement. Astron. J., 126, 26872706.Google Scholar
Standish, E. M. (1998). Time Scales in the JPL and CfA Ephemerides. Astron. Astrophys., 336, 381384.Google Scholar
Trans. Int. Astron. Union, Vol. XVI B Proc. 16th General Assembly Grenoble, 1976 (1977) Müller, E. and Jappel, A., eds. Washington, DC: Association of Universities for Research in Astronomy.Google Scholar
Trans. Int. Astron. Union, Vol. XVII B Proc. 17th General Assembly Montreal, 1979 (1980) Wayman, P., ed. Washington, DC: Association of Universities for Research in Astronomy.Google Scholar
Trans. Int. Astron. Union, Vol. XXI B Proc. 21st General Assembly Buenos Aires, 1991 (1992). Bergeron, J., ed. Dordrecht: Kluwer Academic Publishers.Google Scholar
Trans. Int. Astron. Union, Vol. XXIV B Proc. 24th General Assembly Manchester, 2000. (2001). Rickman, H., ed. San Francisco, CA: Astronomical Society of the Pacific.Google Scholar
Trans. Int. Astron. Union, Vol. XXVI B Proc. 26th General Assembly, Prague, 2006 (2007). van der Hucht, K. A., ed. Cambridge: Cambridge University Press.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×