Book contents
- Frontmatter
- Contents
- List of contributors
- Preface
- Water chemistry at the gill surfaces of fish and the uptake of xenobiotics
- Bioaccumulation of waterborne 1,2,4,5-tetrachlorobenzene in tissues of rainbow trout
- Dietary exposure to toxic metals in fish
- The physiology and toxicology of zinc in fish
- Lethal and sub-lethal effects of copper upon fish: a role for ammonia toxicity?
- The physiological status of brown trout exposed to aluminium in acidic soft waters
- Physiological and metabolic costs of acclimation to chronic sub-lethal acid and aluminium exposure in rainbow trout
- Physiological effects of nitrite in teleosts and crustaceans
- Metallothioneins in fish: induction and use in environmental monitoring
- Oestrogenic substances in the aquatic environment and their potential impact on animals, particularly fish
- Effect of genetic toxicants in aquatic organisms
- In vitro toxicology of aquatic pollutants: use of cultured fish cells
- Principles governing the use of cytochrome P4501A1 measurement as a pollution monitoring tool in the aquatic environment
- Index
The physiology and toxicology of zinc in fish
Published online by Cambridge University Press: 20 May 2010
- Frontmatter
- Contents
- List of contributors
- Preface
- Water chemistry at the gill surfaces of fish and the uptake of xenobiotics
- Bioaccumulation of waterborne 1,2,4,5-tetrachlorobenzene in tissues of rainbow trout
- Dietary exposure to toxic metals in fish
- The physiology and toxicology of zinc in fish
- Lethal and sub-lethal effects of copper upon fish: a role for ammonia toxicity?
- The physiological status of brown trout exposed to aluminium in acidic soft waters
- Physiological and metabolic costs of acclimation to chronic sub-lethal acid and aluminium exposure in rainbow trout
- Physiological effects of nitrite in teleosts and crustaceans
- Metallothioneins in fish: induction and use in environmental monitoring
- Oestrogenic substances in the aquatic environment and their potential impact on animals, particularly fish
- Effect of genetic toxicants in aquatic organisms
- In vitro toxicology of aquatic pollutants: use of cultured fish cells
- Principles governing the use of cytochrome P4501A1 measurement as a pollution monitoring tool in the aquatic environment
- Index
Summary
Zinc levels in the aquatic environment
The background concentrations of Zn in aquatic environments are comparatively low. In unpolluted areas, the concentrations of total Zn in the water have been reported to be 1 μg 1−1 or less (Spry, Wood & Hodson, 1981; Hogstrand, Lithner & Haux, 1991). Zinc has an extensive industrial use in alloys, galvanizing, pigments, and electrical equipment. On a relative basis, surface drainage and atmospheric fallout are the most important inputs of Zn to aquatic environments (Spear, 1981). Concentrations of waterborne Zn in industrialized areas rarely exceed 50 μg 1−1 (Coombs, 1980; Spear, 1981; Hogstrand and Haux, 1991), although concentrations of dissolved Zn far above 100 μg 1−1 have been reported (Abdullah et al., 1976; Roch & McCarter, 1984). There is also a coupling between acidification and increased waterborne concentrations of Zn, probably caused by leaching of Zn from rocks and sediments (Baker, 1982).
Zinc is a micronutrient
A total absence of Zn is not compatible with life. Although the involvement of Zn in biological systems has been suspected for a very long time, it was not until the middle of this century that evidence for the biochemical functions of Zn started to emerge. Keilin and Mann (1940) were the first to recognize the involvement of Zn in enzymes by their isolation of carbonic anhydrase. To date, over 300 proteins have been identified that need Zn for their functions and the number is rapidly increasing (Vallee & Falchuk, 1993). The biological activities of these proteins include steps in the metabolism of nucleic acids, proteins, carbohydrates, and fatty acids.
- Type
- Chapter
- Information
- Toxicology of Aquatic PollutionPhysiological, Molecular and Cellular Approaches, pp. 61 - 84Publisher: Cambridge University PressPrint publication year: 1996
- 41
- Cited by