Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-23T00:50:39.054Z Has data issue: false hasContentIssue false

5 - Trees in a Warming World

Published online by Cambridge University Press:  22 June 2020

William J. Manning
Affiliation:
University of Massachusetts, Amherst
Get access

Summary

In Chapter 4, interactive biogeochemical and biophysical factors that affect tree function in relation to atmospheric cooling and warming were considered. Biogeochemical factors include photosynthesis and biogenic hydrocarbons. Biophysical factors include albedo, evapotranspiration, and ozone. How growth, photosynthesis, transpiration, and ozone affect trees due to increasing changes in atmospheric temperature and composition will be considered here.

Type
Chapter
Information
Trees and Global Warming
The Role of Forests in Cooling and Warming the Atmosphere
, pp. 160 - 199
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abatzoglou, J. T. and Williams, A. P. 2016. Impact of anthropogenic climate change on wildfire across western US forests. Proceedings of the National Academy of Sciences 113: 1177011775. www.pnas.org/cgi/doi/10.1073/pnas.160771113.Google Scholar
Abrams, M. D. and Nowacki, G. J. 2016. An interdisciplinary approach to better assess global change impacts and drought vulnerability on forest dynamics. Tree Physiology 36: 412427. doi: 10.1093/treephys/tpw005.CrossRefGoogle ScholarPubMed
Adams, H. D., Guardiola-Claramonte, M., Barron-Gafford, G. A. et al. 2009. Temperature sensitivity of drought-induced tree mortality portends increased regional die-off under global change type drought. Proceedings of the National Academy of Sciences 106: 70637066 www.pnas.org/cgi/doi/10.1073/pnas.0901438106.Google Scholar
Aerts, R., Eswald, M., Nicolas, M. et al. 2017. Invasion by the alien tree Prunus serotina alters ecosystem functions in a temperate deciduous forest. Frontiers in Plant Science 8: article 179. doi: 10.3389/fpls.2017.00179.Google Scholar
Aitken, S. N., Yeaman, S., Holliday, J. A., Wang, T. and Curtis-Lane, S. 2007. Adaptation, migration or extirpation: climate change outcomes for tree populations. Evolutionary Applications February 1: 95111. doi: 10.1111/j.1752-4571.2007.00013.CrossRefGoogle Scholar
Allen, C. D., Breshears, D. D. and McDowell, N. G. 2015. On underestimation of global vulnerability to tree mortality and forest dieoff from hotter drought in the Anthropocene. Ecosphere 6: article 129. doi: 10.1890/ES15=00203.13.x.Google Scholar
American Forest Foundation. Wildfires and climate change. www.forestfoundation.org/wildfires-climate-change (accessed 18/03/2018).Google Scholar
Anderegg, W. R. L., Hicke, J. A., Fisher, R. A. et al. 2015. Tree mortality from drought, insects, and their interactions in a changing climate. New Phytologist 208: 674683. doi: 10.1111/nph.13477.Google Scholar
Anderegg, W. R. L., Koning, A. G., Trugman, A. T. et al. 2018. Hydraulic diversity of forests regulates ecosystem resilience during drought. Nature 561: 538541. doi: 10.1038/s41586-018-0539-7.CrossRefGoogle ScholarPubMed
Andrus, R. A., Harvey, B. J., Rodman, K. C., Hart, S. J. and Veblen, T. T. 2018. Moisture availability limits subalpine tree establishment. Ecology 2018. doi: 10.1002/ecy.2134.Google Scholar
Asner, G. P., Hughes, R. F., Vitousek, P. M. et al. 2008. Invasive plants transform the three-dimensional structure of rain forests. Proceedings of the National Academy of Sciences 105: 45194523..Google Scholar
Aspinwall, M. J., Drake, J. E., Campany, C. et al. 2016. Convergent acclimation of leaf photosynthesis and respiration to prevailing ambient temperatures under current and warmer climates in Eucalyptus tereticornis. New Phytologist 212: 354367. doi: 1111/nph.14035.Google Scholar
Bennett, A. C., McDowell, N. G., Allen, C. D. and Anderson-Teixeira, K. J. 2015. Larger trees suffer most during drought in forests worldwide. Nature Plants 1: article 15139. doi: 10.1038/nplants.2015.139.Google Scholar
Bentz, B. J., Regniere, J., Fetig, C. J. et al. 2010. Climate change and bark beetles of the Western United States and Canada: direct and indirect effects. BioScience 60: 602613. doi: 10.1525/bio.2010.60.8.6.CrossRefGoogle Scholar
Boisvert-Marsh, L., Perie, C. and de Blois, S. 2014. Shifting with climate? Evidence for recent changes in tree species distribution at high latitudes. Ecosphere 5: 133. doi: 10.1890/ES14-00111.1.Google Scholar
Bonan, G. B. 2008. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320: 14441489.Google Scholar
Bond-Lamberty, B., Peckham, S. D., Ahi, D. E. and Gower, S. T. 2007. Fire as the dominant driver of central Canadian boreal forest carbon balance. Nature 450: 8992. doi: 10.1038/nature06272.Google Scholar
Bradshaw, A. D. 1965. Evolutionary significance of phenotypic plasticity in plants. Advances in Genetics 13: 115155. doi: 10.1016/S0065-2660(08)60048-6.CrossRefGoogle Scholar
Brando, P. M., Nepstad, D. C., Morton, D. C. et al. 2014. Abrupt increases in Amazonia tree mortality due to drought–fire interactions. Proceedings of the National Academy of Sciences 111: 63476352. doi: 10.1073/pnas.1305499111.Google Scholar
Braun, S., Schindler, C. and Rihm, B. 2014. Growth losses in Swiss forests caused by ozone: epidemiological data analysis of stem increment of Fagus sylvatica L. and Picea abies Karst. Environmental Pollution 192: 129138. doi: 10.1016/j.envpol.2014.05. 016.Google Scholar
Brienen, R. J. W., Phillips, O. L., Feldpausch, T. R. et al. 2015. Long-term decline of the Amazon carbon sink. Nature 519: 344348. doi: 10.1038/nature14283.Google Scholar
Brinck, K., Fischer, R., Groeneveld, J. et al. 2017. High resolution analysis of tropical forest fragmentation and its impact on the global carbon cycle. Nature Communications 8: 14855. doi: 10.1038/ncomms14855.Google Scholar
Brzostek, E. R., Dragoni, D., Schmid, H. P. et al. 2014. Chronic water stress reduces tree growth and the carbon sink of deciduous hardwood forests. Global Change Biology 20: 25312539. doi: 10.1111/gcb.12528.Google Scholar
Cailleret, M., Ferreti, M., Gessler, A., Rigling, A. and Schaub, M. 2018. Ozone effect on European forest growth – towards an integrated approach. Journal of Ecology. doi: 10.1111/1365-2745.12941.Google Scholar
Campbell, J. E., Berry, J.A., Seibt, Y. et al. 2017. Large historical growth in global terrestrial gross primary production. Nature 544: 84–87. doi: 10.1038/nature22030.Google Scholar
Cieslik, S., Omasa, K. and Paoletti, E. 2009. Why and how terrestrial plants exchange gases with air. Plant Biology 11: 2434.Google Scholar
Clark, J. S., Iverson, L., Woodall, C. W. et al. 2016. The impacts of increasing drought on forest dynamics, structure, and biodiversity in the United States. Global Change Biology. doi: 10.1111/gcb.13160.Google Scholar
Cohen, W. B., Yang, Z., Stehman, S. V. et al. 2016. Forest disturbance across the continuous United States from 1985–2012: the emerging dominance of forest decline. Forest Ecology and Management 360: 242252. doi: 10.1016/j.foreco.2015.10.042.Google Scholar
Coops, N. C. and Waring, R. H. 2011. Estimating the vulnerability of fifteen tree species under changing climate in Northwest North America. Ecological Modeling 222: 21192129. doi: 10.1016/j.ecolmodel.2011.03.033.Google Scholar
Crowther, T. W., Glick, H. B., Covey, K. R. et al. 2015. Mapping tree density at a global scale. Nature 525: 201. doi: 10.1038/nature14967.Google Scholar
Dale, A. G. and Frank, S. D. 2014. The effects of urban warming on herbivore abundance and street tree condition. PLoS One 9. doi: 10.1371/journal.pone.0102996.Google Scholar
Davy, R., Esau, I., Chernolkulsky, A., Outten, S. and Zilitiinkevich, . 2016. Diurnal asymmetry of the observed global warming. International Journal of Climatology. doi: 10.1002/joc/46888.CrossRefGoogle Scholar
Doughty, C. E., Metcalfe, D. B., Girardin, C. A. J. et al. 2015. Drought impact on forest carbon dynamics and fluxes in Amazonia. Nature 519. doi: 10.1038/nature14213.Google Scholar
Dyderski, M. K. 2017. How much does climate change threaten European forest tree species distributions? Global Change Biology 24: 11501163. doi: 10.1111/gcb.13925.Google Scholar
Elmore, A. J., Nelson, D. M. and Craine, J. M. 2016. Earlier springs are causing reduced nitrogen availability in North American eastern deciduous forests. Nature Plants 2: 15. doi: 10.1038/nplants.2016.133.Google Scholar
Fang, J., Kato, T., Guo, Z. et al. 2014. Evidence for environmentally enhanced forest growth. Proceedings of the National Academy of Sciences 171: 95279532.CrossRefGoogle Scholar
Fei, S., Deperez, J. M., Potter, K. M. et al. 2017. Divergence of species responses to climate change. Science Advances 3: e1603055.Google Scholar
Feldpausch, T. R., Phillips, O. L., Brienen, R. J. W. et al. 2016. Amazon forest response to repeated droughts. Global Biogeochemical Cycles 30. doi: 10.1002/2015GB005133.Google Scholar
Frank, A., Howe, G. T., Sperisen, C. et al. 2017. Risk of genetic maladaption due to climate change in three major European tree species. Global Change Biology 23: 53585371. doi: 10.1111/gcb.13802.Google Scholar
Fu, R., Yin, L., Li, W. et al. 2013. Increased dry-season length over southern Amazonia in recent decades and its implications for future climate change projection. Proceedings of the National Academy of Sciences. doi: 10.1073/pnas.13302584110.Google Scholar
Fu, Y. H., Zhao, H., Piao, S. et al. 2015. Declining global warming effects on the phenology of spring leaf unfolding. Nature 526. doi: 10.1038/nature15402.Google Scholar
Greenwood, S., Paloma-Ruiz, B., Martinez-Vilialta, J. et al. 2017. Tree mortality across biomes is promoted by drought intensity, lower wood density and higher specific leaf area. Ecology Letters. doi: 10.1111/ele.12748.Google Scholar
Hamann, A. and Wang, T. 2006. Potential effects of climate change on ecosystem and tree species distribution in British Columbia. Ecology 87: 27732786.Google Scholar
Hansen, M. C., Popatov, P. V., Moore, R. et al. 2013. High resolution global maps of 21st-century forest cover change. Science 342: 850853. doi: 10.1126/science.1244693.Google Scholar
Heubner, C. D., 2011. Establishment and spread of Microstegium vimineum (Japanese stiltgrass) in closed canopy forests. In: McManus, K.A. and Gottschalk, K.W. (eds) General Tech Report NRS_P-75, Newtown Square PA, USDA Department of Agriculture Forest Service, Northern Research Station: 29.Google Scholar
Karnosky, D. F., Pretgitzer, K. S., Zack, D. R. et al. 2005. Scaling ozone responses of forest trees to the ecosystem level in a changing climate. Plant, Cell and Environment 28: 965981.CrossRefGoogle Scholar
Katz, C. 2017. Small pests, big problems: the global spread of bark beetles. Yale Environment 360. https://e360.yale.edu/features/small-pests-big-problems-theglobal-spread-of-bark-beetles.Google Scholar
Keeling, C. D., Chin, J. F. S and Whorf, T. P. 1996. Increased activity of northern vegetation inferred from atmospheric CO2 measurements. Nature 382: 146149.Google Scholar
Keenan, T. F. and Richardson, A. D. 2015. The timing of autumn senescence is affected by the timing of spring phenology: implications for predictive models. Global Change Biology 21: 26342641. doi: 10.1111/gcb.12890.Google Scholar
Korner, C. and Basler, D. 2010. Phenology under global warming. Science 327: 146147. doi: 10.1126/science.1186473.Google Scholar
Laurance, W. F., Delamônica, P., Laurance, S. G., Vasconcelos, H. L. and Lovejoy, T. E. 2000. Conservation: Rainforest fragmentation kills big trees. Nature 404: 836.CrossRefGoogle Scholar
Lesk, C., Coffel, E., D’Amato, A. W., Dodds, K. and Horton, R. 2017. Threats to North American forests from southern pine beetle with warming winters. Nature Climate Change 7. doi: 10.1038/nclimate3375.Google Scholar
Lewis, S. L., Edwards, D. P. and Galbraith, D. 2015. Increasing human dominance of tropical forests. Science 349: 827831.Google Scholar
Li, P., de Marco, A., Feng, Z. et al. 2017. Nationwide ground-level ozone measurements in China suggest serious risks to forests. Environmental Pollution. doi: 10.1016/j.envpol.2017.11.002.Google Scholar
Linderholm, H. W. 2006. Growing season changes in the last century. Agricultural and Forest Meteorology 137: 114. doi: 10.1016/j.agrformet.2006.03.006.CrossRefGoogle Scholar
Liu, H., Williams, P. A., Allen, C. D. et al. 2013. Rapid warming accelerates tree growth decline in semi-arid forests of inner Asia. Global Change Biology 19: 25002510. doi: 10.1111/gcb.12217.CrossRefGoogle ScholarPubMed
Manning, W. J. 2003. Detecting plant effects is necessary to give biological significance to ambient ozone monitoring data and predictive ozone standards. Environmental Pollution 126: 375379.CrossRefGoogle ScholarPubMed
Manning, W. J. 2005. Establishing a cause and effect relationship for ambient exposure and tree growth in the forest: progress and an experimental approach. Environmental Pollution 137: 443454. doi: 10.1016/j.envpol.2005.01.031.Google Scholar
Manning, W. J. and Godzik, B. 2004. Bioindicator plants for ambient ozone in Central and Eastern Europe. Environmental Pollution 130: 3339.CrossRefGoogle ScholarPubMed
McDowell, N., Allen, C. D., Anderson-Texeira, K. et al. 2018. Drivers and mechanisms of tree mortality in moist tropical forests. New Phytologist. doi: 10.1111/nph.15027.Google Scholar
McIntyre, P. J., Thorne, J. H., Dolanc, C. R., et al., 2015. Twentieth-century shifts in forest structure in California: Denser forests, smaller trees, and increased dominance of oaks. Proceedings of the National Academy of Sciences 112(5): 14581463. https://doi.org/10.1073/pnas.1410186112.Google Scholar
Mech, A. M., Tobin, P. C., Teskey, R. O., Rhea, J. R. and Gandhi, K. J. K. 2018. Increases in summer temperatures decrease the survival of an invasive forest insect. Bio Invasions 20: 365374. doi: 10.1007/s10530-017-1537-7.Google Scholar
Meineke, E. K., Dunn, R. R., Sexton, J. O. and Frank, S. D. 2013. Urban warming drives insect pest abundance on street trees. PLoS One. doi: 10.1371/journal.pone.0059687.CrossRefGoogle Scholar
Meineke, E., Youngstead, E., Dunn, R. R. and Frank, S. D. 2016. Urban warming reduces carbon storage. Proceedings of the Royal Society B 283: 19. doi: 10.1098/rspb.2016.1574.Google Scholar
Meiners, S. J. 2007. Apparent competition: an impact of exotic shrub invasion on tree regeneration. Bio Invasions 9: 849855. doi: 10.10007/s10530-006-9086-5.CrossRefGoogle Scholar
Moorman, G. W. 2017. Armillaria root rot of trees. https://extension.psu.edu/armillaria-root-rot-of-trees (accessed 15/03/2018).Google Scholar
Moura, B. B., Alves, E. G., Marabesi, M. A. et al. 2018. Ozone affects leaf physiology and causes injury to foliage of native tree species from the tropical Atlantic Forest of Southern Brazil. Science of the Total Environment 610–611: 912925. doi: 1016/j.scitotenv.2017.07.130.Google Scholar
Nabuurs, G.-J., Lindner, M., Verkerk, P. J. et al. 2013. First signs of carbon sink saturation in European forest biomass. Nature Climate Change 3: 792796. doi: 1038/nclimate1853.Google Scholar
Neumann, M., Mues, V., Moreno, A. and Hasenauer, H. 2017. Climate variability drives recent tree mortality in Europe. Global Change Biology 23: 47884797. doi: 10.1111/gcb.13724.Google Scholar
Newton, A. C. and Oldfield, S. 2008. Red Listing the world’s tree species: a review of recent progress. Endangered Species Research 6: 137147.Google Scholar
Nowak, D. J., Stein, S. M., Randler, P. B. et al. 2010. Sustaining America’s urban trees and forests. US Forest Service General Technical Report NRS-62.Google Scholar
Pan, Y., Birdsey, R. A., Fang, J. et al. 2011. A large and persistent carbon sink in the World’s forests. Science 333: August 19 doi: 10.1126/science.121609.CrossRefGoogle ScholarPubMed
Park, J. H., Lee, D. K., Gan, J. et al. 2018. Effects of climate change and ozone concentration on the net primary productivity of forests in South Korea. Forests 9: 112. doi: 10.3390/f9030112.Google Scholar
Parrish, D. D., Lamarque, J.-F., Naik, V. et al. 2014. Long-term changes in lower tropospheric baseline ozone concentrations: comparing chemistry-climate models and observations at northern midlatitudes. Journal of Geophysical Research: Atmospheres. 119: 57195736. doi: 10.1002/203JD021435.Google Scholar
Pautasso, M., Aas, G., Queloz, V. and Holdenrieder, O. 2013. European ash (Fraxinus excelsior) dieback – a conservation biology challenge. Biological Conservation 158: 3749. 10.1016/j.biocon.2012.08.026.Google Scholar
Pedlar, J. H. and McKenney, D. W. 2016. Assessing the anticipated growth response of northern conifer populations to a warming climate. Scientific Reports 7: 43881. doi: 10.1038/srep43881.Google Scholar
Peng, C., Ma, Z., Lei, X. et al. 2011. A drought-induced pervasive increase in tree mortality across Canada’s boreal forests. Nature Climate Change 1: 467471. doi: 10.1038/nclimate1293.Google Scholar
Penuelas, J., Rutishauser, T. and Filella, I. 2009. Phenology feedbacks on climate change. Science 324. doi: 1126/science.1173004.Google Scholar
Penuelas, J., Sardans, J., Iolanda, F. et al. 2017. Impacts of global change on Mediterranean forests and their services. Forests 8: 86. doi: 10.3390/f8120463.Google Scholar
Piao, S., Ciais, P., Friedlingstein, P. et al. 2008. Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature 451: 4952. doi: 10.138/nature06444.Google Scholar
Pretzsch, H., Biber, P., Enno, U. et al. 2017. Climate change accelerates growth of urban trees in metropolises worldwide. Scientific Reports 7: 110. doi: 10.1038/s41598-017-14831-w.Google Scholar
Proietti, C., Anav, A., de Marco, A., Sicard, P. and Vitale, M. 2016. A multi-site analysis of the ozone effects on gross primary production of European forests. Science of the Total Environment 556: 111. doi: 10.1016/j.scitoenv.2016.02.187.Google Scholar
Putz, S., Groeneveld, J., Henle, K. et al. 2014. Long-term carbon loss in fragmented neotropical forests. Nature Communications. doi: 10.1038/ncomms6037.Google Scholar
Ramsfield, T. D., Bentz, B. J., Faccoli, M., Jactel, H. and Brockerhoff, E. G. 2016. Forest health in a changing world on forest insect and pathogen impacts. Forestry 89: 245252. doi: 10.1093/forestry/qpw018.Google Scholar
Rogers, P. C. and McAvoy, D. J. 2018. Mule deer impede Pando’s recovery: implications for aspen resilience from a single-genotype forest. PLoS ONE 13: e0203619. doi: 10.1371/journal.pone.0203619.Google Scholar
Schlesinger, W. H. 2018. Are wood pellets a green fuel? Science 359: 1328 doi: 10.1126/science.aat2305.Google Scholar
Schnitzer, S. A., van der Heijden, G. M. F., Mascaro, J. and Carson, W. P. 2014. Liana in gaps reduce carbon accumulation in a tropical forest. Ecology doi: 10.1890/13-1718.1.Google Scholar
Schwartz, J. D. 2015. Eleven regions of the world where most forest loss is expected to occur by 2030. World Wildlife Report. www.worldwildlife.org/stories/11-of-the-world-s-most-threatened-forests (accessed 18/03/2018).Google Scholar
Schwartz, M. D., Ahas, R. and Aasa, A. 2006. Onset of spring starting earlier across the Northern Hemisphere. Global Change Biology 12: 343351. doi: 10.1111/j.1365-2486.01097.x.Google Scholar
Sedano, F., Silva, J. A., Machoco, R. et al. 2016. The impact of charcoal production on forest degradation: a case study in Tete, Mozambique. Environmental Research Letters 11: 094020. doi: 10.1088/1748-9326/11/9094020.CrossRefGoogle ScholarPubMed
Sommerfeld, A., Senf, C., Buma, B. et al. 2018. Patterns and drivers of recent disturbances across the temperate forest biome. Nature Communications 9: 4355. doi: 10.1038/s41467-018-06788-9.Google Scholar
Spellman, K. V., Mulder, C. P. H. and Hollingsworth, T. N. 2014. Susceptibilty of burned black spruce (Picea mariana) forests in interior Alaska. Bio Invasions 16: 18791895. doi: 10.1007/s10530-013-0633-6.Google Scholar
ter Steege, H., Pitman, N. C. A., Killeen, T. J. et al. 2015. Estimating the global conservation status of more than 15,000 Amazonian tree species. Science Advances 1: e1500936. doi: 10.1126/sciadv.1500936.Google Scholar
Stevens-Rumann, C. S., Kemp, K. B., Higuera, P. E. et al. 2017. Evidence for declining forest resilience to wildfires under climate change. Ecology Letters 2017. doi: 10.1111/ele.12889.Google Scholar
Stinziano, J. R.., Huner, N. P. and Way, D. A., 2015. Warming delays autumn declines in photosynthetic capacity in a boreal conifer, Norway spruce (Picea abies). Tree Physiology 35(12): 13031313. doi: 10.1093/treephys/tpv118.Google Scholar
Stralberg, D., Wang, X., Pariesien, M.-A. et al. 2018. Wildfire-mediated vegetation change in boreal forests of Alberta, Canada. Ecosphere. doi: 10.1002/ecs2.2156.Google Scholar
Strickland, M. S., Devore, J. L., Maerz, A. C. and Bradford, M. A. 2010. Grass invasion of a hardwood forest is associated with declines in belowground carbon pools. Global Change Biology 16: 13381350. doi: 10.1111/j.1365-2486.2009.02042.x.Google Scholar
Tang, Y., Chen, A. and Zhou, S. 2016. Carbon storage and sequestration of urban street trees in Beijing, China. Frontiers in Ecology and Evolution 4: 18. doi: 10.3389/fevo.2016.00053.Google Scholar
Taubert, F., Fischer, R., Groeneveld, J. et al. 2018. Global patterns of tropical forest fragmentation. Nature 554: 519522. doi: 10.1038/nature25508.Google Scholar
Trenberth, K. E., Dai, A., van der Schrier, G. et al. 2014. Global warming and changes in drought. Nature Climate Change 4: 1722. doi: 10.1038/nclimate2064.CrossRefGoogle Scholar
Trumbore, S., Brando, P. and Hartmann, H. 2015. Forest health and global change. Science 349: 314318. doi: 10.1126/science.aac6759.Google Scholar
Turetsky, M. R., Kane, E. S., Harden, J. W. et al. 2010. Recent acceleration of biomass burning and carbon losses in Alaska. Nature Geoscience 5. doi: 10.1038/ngeo1027.Google Scholar
Turnbull, M. H., Murthy, R. and Griffin, K. L. 2002. The relative impacts of daytime and night-time warming on photosynthetic capacity in Populus deltoides. Plant, Cell and Environment 25: 17291737.Google Scholar
Turnbull, M. H., Tissue, D. T., Murthy, R. et al. 2004. Nocturnal warming increases photosynthesis at elevated CO2 partial pressure in Populus deltoides. New Phytologist 161: 819816. doi: 10.1111/j.1469-8137.2004.00994.x.Google Scholar
US Forest Service News Release 2016. Aerial survey identifies more than 100 million dead trees in California. www.fs.fed.us/news/releases/new-aerial-survey-identifies-more-than-100-million-dead trees in California (accessed 05/03/2018).Google Scholar
van der Werf, G. R., Morton, D. C., DeFries, R. S. et al. 2009. CO2 emissions from forest loss. Nature Geoscience 2: 737738.Google Scholar
van Mantgem, P. J., Stephenson, N. L., Byrne, J. C. et al. 2009. Widespread increase of tree mortality rates in the Western United States. Science 323: 521524.Google Scholar
Wang, B., Shugart, H. H., Shuman, J. K. and Lerdau, M. T. 2015. Forests and ozone: productivity, carbon storage and feedbacks. Scientific Reports 6: 22133. doi: 10.1038/srep22133.Google Scholar
Way, D. A. 2011. Tree phenology responses to warming: spring forward, fall back? Tree Physiology 31: 469471. doi: 10.1083/treephys/tpr044.Google Scholar
Way, D. A. and Oren, R. 2010. Differential responses to changes in growth temperature between trees from different functional groups and biomes: a review and synthesis of data. Tree Physiology 30: 669688. doi: 10.1093/treephys/tpq015.Google Scholar
Westerling, A. L. 2016. Increasing western US forest wildfire activity: sensitivity to changes in timing of spring. Royal Society Proceedings B 371: issue 1696. doi: 0.1098/rstb.2015.0178.Google Scholar
Wittig, V. E., Ainsworth, E. A., Naidu, S. L., Karnosky, D. F. and Long, S. 2009. Quantifying the impact of current and future tropospheric ozone on tree biomass, growth, physiology and biochemistry: a quantitative meta-analysis. Global Change Biology 15: 396424. doi: 10.1111/j.1365-2486.2008.01774.x.Google Scholar
Wong, C. M. and Daniels, L. D. 2017. Novel forest decline triggered by multiple interactions among climate, an introduced pathogen and bark beetles. Global Change Biology 23: 19261941. doi: 10.1111/gcb.13554.Google Scholar
Worrall, J. J., Marchetti, S. B., Egeland, L. et al. 2010. Effects of and etiology of sudden aspen decline in southwestern Colorado, USA. Forests Ecology and Management 260: 638648. doi: 10.1016/j.foreco.2010.05.020.Google Scholar
Yates, E. D., Levia, D. F. and Williams, C. L. 2004. Recruitment of tree non-native plants into a fragmented forest in southern Illinois. Forest Ecology and Management 190: 119130. doi: 10.1016/j.foreco.2003.11.008.Google Scholar
Zhang, T., Niinemets, O., Sheffield, J. and Lichstein, J. W. 2018. Shifts in tree functional composition amplify the response of forest biomass to climate. Nature 556: 99102. doi: 10.1038/nature26152.Google Scholar
Zhu, Z., Piao, S., Mynenei, R. R. et al. 2016. Greening of the Earth and its drivers. Nature Climate Change 6: 791795. doi: 10.1038/nclimate3004.Google Scholar
Zimmermann, J., Hauck, M., Dulamsuren, C. and Leuschner, C. 2015. Climate warming-related growth decline affects Fagus sylvatica, but not other broad-leaved tree species in Central European mixed forests. Ecosystems 560–572. doi: 10.1007/s10021-015-9849-x.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×