Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-19T12:03:40.824Z Has data issue: false hasContentIssue false
This chapter is part of a book that is no longer available to purchase from Cambridge Core

17 - Choking in Two-Phase Flow

S. Mostafa Ghiaasiaan
Affiliation:
Georgia Institute of Technology
Get access

Summary

Physics of Choking

Choking can happen when a fluid is discharged through a passage from a pressurized chamber into a chamber that is at a significantly lower pressure. When a flow passage is choked, it supports the maximum possible fluid discharge rate for the given system conditions.

Choking can be better understood by the simple experiment shown in Fig. 17.1, where a chamber containing a fluid at an elevated pressure P0 is connected to another chamber that is at a lower pressure Pout by a flow passage. Suppose that the upstream conditions are maintained unchanged in the experiment, while the pressure in the downstream chamber, Pout, is gradually reduced, and the mass flow rate is continuously measured. It will be observed that the mass flux increases as Pout is reduced, until Pout reaches a critical value Pch. Further reduction of Pout will have no impact on mass flux or anything else associated with the channel interior.

The physical explanation of critical flow is as follows. A flow is critical (choked) when disturbances (or hydrodynamic signals) initiated downstream of some critical cross section cannot propagate upstream of the critical cross section. In single-phase flow, infinitesimally small disturbances (hydrodynamic signals) travel with the speed of sound. In a straight channel often the critical cross section occurs at the exit. In nozzles and other converging–diverging channels, the throat acts as the critical cross section.

Type
Chapter
Information
Two-Phase Flow, Boiling, and Condensation
In Conventional and Miniature Systems
, pp. 499 - 528
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×