Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-19T12:31:51.171Z Has data issue: false hasContentIssue false
This chapter is part of a book that is no longer available to purchase from Cambridge Core

6 - The Drift Flux Model and Void–Quality Relations

S. Mostafa Ghiaasiaan
Affiliation:
Georgia Institute of Technology
Get access

Summary

The Concept of Drift Flux

The drift flux model is the most widely used diffusion model for gas–liquid two-phase flow. It provides a semi-empirical methodology for modeling the gas–liquid velocity slip in one-dimensional flow, while accounting for the effects of lateral (cross-sectional) nonuniformities. In its most widely used form, the DFM needs two adjustable parameters. These parameters can be found analytically only for some idealized cases and are more often obtained empirically. These empirically adjustable parameters in the model turn out to have approximately constant values or follow simple correlations for large classes of problems, however.

Recall that the diffusion models for two-phase flow only need one set of momentum conservation equations, often representing the mixture. Knowing the velocity for one of the phases (or the mixture), one can use the model's slip velocity relation (or its equivalent) to find the other phasic velocity. When used in the cross-section-average phasic momentum equations, the DFM thus leads to the elimination of one momentum equation. The mixture momentum equation can be recast in terms of mixture center-of-mass velocity. The elimination of one momentum equation leads to a significant savings in computational cost. Also, using the DFM, some major difficulties associated with the 2FM (e.g., the interfacial transport constitutive relations, the difficulty with flow-regime-dependent parameters, and numerical difficulties) can be avoided. These advantages of course come about at the expense of precision and computed process details.

Consider a one-dimensional flow shown in Fig. 6.1. Assume all parameters are time averaged.

Type
Chapter
Information
Two-Phase Flow, Boiling, and Condensation
In Conventional and Miniature Systems
, pp. 173 - 185
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×