Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-27T16:10:29.948Z Has data issue: false hasContentIssue false

13 - Formation of Learning Activity and Theoretical Thinking in Science Teaching

Published online by Cambridge University Press:  05 June 2012

Hartmut Giest
Affiliation:
Institute for Primary Education, University of Potsdam, Potsdam, Germany
Joachim Lompscher
Affiliation:
Institute for Primary Education, University of Potsdam, Potsdam, Germany
Alex Kozulin
Affiliation:
International Center for the Enhancement of Learning Potential, Jerusalem
Boris Gindis
Affiliation:
Touro College, New York
Vladimir S. Ageyev
Affiliation:
State University of New York, Buffalo
Suzanne M. Miller
Affiliation:
State University of New York, Buffalo
Get access

Summary

PROBLEMS OF SCIENCE CLASSROOMS

One of the main tasks of schools today consists of preparing students for lifelong learning. That means, first of all, enabling students to learn and think independently and efficiently. It is well known that learning tasks and demands in science education present substantial difficulties for the majority of students (Solomon & Aikenhead, 1994; Yager, 1996; Wiser & Amin, 2001; Vosniadou, Ioannides, Dimitrakopovlov, & Papademetriov, 2001; Mikkilä-Erdmann, 2001). International comparisons (e.g., by the Third International Mathematics and Science Study [TIMSS] and the Programme for International Student Assessment [PISA]) have shown large problems concerning application tasks, problem solving, and scientific argumentation, whereas reproductive tasks and skills were better mastered. Science education suffers – among other shortcomings – from the dominant orientation toward isolated, nonsituated facts, which are seldom applied to real-life situations. This approach leads to difficulties in understanding and a loss of sense and motivation in many students.

In this context, many important questions arise, among others: What can teachers do to maximize the effective construction of adequate science knowledge by students? How can teachers maximize the opportunities for students to construct new schemata, new ways of thinking about the world (Adey & Shayer, 1994; Demetriou, Shayer, & Efklides, 1992)? The problem and the questions are not new. And there exist different approaches and answers.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adey, P. S., & Shayer, M. (1994). Really raising standards: Cognitive intervention and academic achievement. London: Routledge
Black, P., & Atkin, J. M. (Eds.) (1996). Changing the subject: Innovation in science, mathematics and technology education. London: Routledge in association with OECD
Bliss, J. (1996). Piaget und Vygotsky: Ihre Bedeutung für das Lehren und Lernen der Naturwissenschaften [Piaget and Vygotsky: Their meaning for instruction and learning of science]. Zeitschrift für Didaktik der Naturwissenschaften, 2 (3), 3–16Google Scholar
Böhme, B. (1989). Besonderheiten leistungsschwacher Schüler 4. Klassen bei der Ausbildung von Lernhandlungen zum selbständigen Erkennen von Ursache-Wirkung-Zusammenhängen [Peculiarities of 4th grade low performance students in the formation of learning actions for independent recognizing causal relations]. EdD dissertation, Akademie der Pädagogischen Wissensch afteh [Academy of Pedagogical Sciences]
Bortoft, H. (1996). The wholeness of nature: Goethe's way toward a science of conscious participation in nature. New York: Lindisfarne Press
Caravita, S. (2001). A re-framed conceptual change theory?Learning and Instruction, 11 (4–5), 421–429CrossRefGoogle Scholar
Carey, S., & Spelke, E. S. (1994). Domain specific knowledge and conceptual change. In L. A. G Hirschfeld & S. A. Gelman (Eds.), Mapping the mind: Domain specifity in cognition and culture (pp. 169–200). Cambridge: Cambridge University PressCrossRef
Chaiklin, S., Hedegaard, M., & Jensen, U. J. (Eds.) (1999). Activity theory and social practice. Aarhus: Aarhus University Press
Chi, M. T. H., Slotta, J. D. & Leeuw, N. (1994). From things to processes: A theory of conceptual change for learning science concepts. Learning and Instruction, 4 (1), 27–44CrossRefGoogle Scholar
Davydov, V. V. (1988). Problems of developmental teaching. Soviet Education, 8, 15–97; 9, 3–83; 10, 3–77Google Scholar
Davydov, V. V. (1996): Teorija razvivajuscego obucenija [Theory of developmental teaching]. Moscow: Intor
Davydov, V. V. (1999). What is real learning activity? In M. Hedegaard & J. Lompscher (Eds.), Learning activity and development (pp. 123–138). Aarhus: Aarhus University Press
Demetriou, A., Shayer, M., & Efklides, A. (Eds.) (1992). Neo-Piagetian theories of cognitive development. London: Routledge
Duit, R. (1999a). Conceptual change approaches in science education. In M. Carretero, W. Schnotz, & S. Vosniadou (Eds.), New perspectives on conceptual change, (pp. 263–282). Amsterdam: Pergamon
Duit, R. (1999b). Towards inclusive views of conceptual change. Paper presented on the Second International Conference of the European Science Education Research Association (E. S. E. R. A.) Research in Science Education: Past, Present, and Future, August 31–September 4, 1999, Kiel, Germany. Available at: http://www.ipn.uni-kiel.de/projekte/esera/book/s201-dui.pdf
Engeström, Y. (1990). Learning, working and imaging: Twelve studies in activity theory. Helsinki: Orienta-Konsultit Oy
Engeström, Y., Miettinen, R., & Punamäki, R.-L. (Eds.) (1999). Perspectives on activity theory. Cambridge: Cambridge University Press
Galperin, P. Y. (1992). Stage-by-stage formation as a method of psychological investigation. Journal of Russian and East European Psychology, 30(4), 60–80CrossRef
Giest, H. (1985). Einführung der Schüler in die Physik nach der Lehrstrategie des Aufsteigens vom Abstrakten zum Konkreten [Introduction of students to physics based on the teaching strategy of ascending from the abstract to the concrete]. EdD dissertation. Berlin. Akademie der Pädagogischen Wissenschaften
Giest, H. (1998). Von den Tücken der empirischen Unterrichtsforschung [On the malice of empirical instructional research]. In H. Brügelmann, M. Fölling-Albers, & S. Richter (Hrsg.), Jahrbuch Grundschule: Fragen der Praxis – Befunde der Forschung (pp. 56–66). Seelze: Friedrich
Giest, H. (2001). Instruction and learning in elementary school. In M. Hedegaard (Ed.), Learning in classrooms (pp. 59–76). Aarhus: Aarhus University Press
Giest, H. & Walgenbach, W. (2002). System-learning – a new challenge to education – bridging special field to transdisciplinary learning. In B. Zeltserman (Ed.), Obrazovanije 21 veka: dostizhenija i perspektivij. Mezhdunarodnij sbornik teoreticheskikh, metodicheskikh i prakticheskikh rabot po problemam obrazovanija [Education in the 21st century: Results and perspectives. International anthology of theoretical, didactical and practical work on problems of education] (pp. 21–37). Riga: Pedagogiskais centrs “Eksperiments.”
Haenen, J. (2001). Outlining the teaching-learning process: Piotr Gal'perin's contribution. Learning and Instruction, 11 (2), 157–170CrossRefGoogle Scholar
Hedegaard, M. (Ed.) (2001). Learning in classrooms. Aarhus: Aarhus University Press
Hedegaard, M., Hakkarainen, P., & Engeström, Y. (Eds.) (1984). Learning and teaching on a scientific basis. Aarhus: Aarhus Universitet, Psykologisk Institut
Hedegaard, M., & Lompscher, J. (Eds.) (1999). Learning activity and development. Aarhus: Aarhus University Press
Huber, L. (2001). Stichwort: Fachliches Lernen [Headword: Domain-specific learning]. Zeitschrift für Erziehungswissenschaft, 3(1), 307–331CrossRefGoogle Scholar
Irmscher, K. (1982). Ausbildung der Lerntätigkeit im 4. Schuljahr nach der Konzeption des Aufsteigens vom Abstrakten zum Konkreten bei der Einführung in die Naturwissenschaften unter besonderer Beachtung des biologischen Aspekts [Formation of learning activity in grade 4 based on the conception of ascending from the abstract to the concrete at the introduction into science education under special consideration of the biological aspect]. EdD dissertation, Berlin. Akademie der Pädagoglschen Wissenschaften
Larkin, J., McDermott, J., Simon, D., & Simon, H. (1980). Expert and novice performance in solving physics problems. Science, 208, 1335–1342CrossRefGoogle ScholarPubMed
Lawson, A.. (1982). The reality of general cognitive operations. Science Education, 66 (2), 229–241CrossRefGoogle Scholar
Lektorsky, V A. (Ed.) (1990). Activity: Theories, methodology and problems. Orlando, FL: Deutsch Press
Leontiev, N A. (1978). Activity, consciousness and personality. Englewood Cliffs, NJ: Prentice-Hall
Limón, M.. (2001). On the cognitive conflict as an instructional strategy for conceptual change: A critical appraisal. Learning and Instruction, 11 (4–5), 357–380CrossRefGoogle Scholar
Lompscher, J. (1989a). Formation of learning activity in pupils. In H. Mandl, E. de Corte, N. Bennett, & H F. Friedrich (Eds.), Learning and instruction: European research in an international context (Vol. 2.2, pp. 47–66). Oxford: Pergamon Press
Lompscher, J. (Ed.) (1989b). Psychologische Analysen der Lerntätigkeit [Psychological analyses of learning activity]. Berlin: Volk und Wissen
Lompscher, J. (1999a). Learning activity and its formation: Ascending from the abstract to the concrete. In M. Hedegaard & J. Lompscher (Eds.), Learning activity and development (pp. 139–166). Aarhus: Aarhus University Press
Lompscher, J. (1999b). Activity formation as an alternative strategy of instruction. In Y. Engeström, R. Miettinen, & R.-L. Punamäki (Eds.), Perspectives on activity theory (pp. 264–281). Cambridge: Cambridge University Press
Lompscher, J. (1999c): Lern- und Lehrforschung aus kulturhistorischer Sicht [Research on learning and instruction from a cultural–historical point of view]. In H. Giest & G. Scheerer-Neumann (Eds.), Jahrbuch Grundschulforschung (Vol. 2, pp. 12–34). Weinheim: Beltz, Deutscher Studienverlag
Lompscher, J. (2002). The category of activity – a principal constituent of cultural–historical psychology. In D. Robbins & A. Stetsenko (Eds.), Vygotsky's psychology: Voices from the past and present. New York: Nova Science Press
Mandl, H. (1997). How should we learn to really learn? Life Long Learning in Europe, 4, 195–199Google Scholar
Mikkilä-Erdmann, M.. (2001). Improving conceptual change concerning photosynthesis through text design. Learning and Instruction, 11(3), 241–257CrossRefGoogle Scholar
Newman, D., Griffin, P., & Cole, M. (1998). The construction zone: Working for cognitive change in school. Cambridge: Cambridge University Press
Oers, B V. (1998). From context to contextualizing. Learning and Instruction, 8 (6), 473–488CrossRefGoogle Scholar
Pintrich, P R., Marx, R W., & Boyle, R A. (1993). Beyond cold conceptual change: The role of motivational beliefs and classroom contextual factors in the process of conceptual change. Review of Educational Research, 6, 167–199CrossRefGoogle Scholar
Posner, G J., Strike, K A., Hewson, P W., & Gertzog, W A. (1982). Accomodation of a scientific conception: Toward a theory of conceptual change. Science Education, 66, 211–277CrossRef
Pravat, R S. (1999). Dewey, Peirce, and the learning paradox. American Educational Research Journal, 36 (1), 47–76Google Scholar
Riedl, R. (1995). Goethe and the path of discovery: An anniversary. Available at: www.kla.univie.ac.at/Journal
Rogoff, B. (1995). Observing sociocultural activity on three planes: Participatory appropriation, guided participation, and apprenticeship. In J V. Wertsch, P. del Rio, & A. Alvarez (Eds.), Sociocultural studies of mind (pp. 139–164). Cambridge: Cambridge University PressCrossRef
Rojas-Drummond, S., Hernández, G., Vélez, M., & Villagrán, G. (1998). Cooperative learning and the appropriation of procedural knowledge by primary school children. Learning and Instruction, 8 (1), 37–62CrossRefGoogle Scholar
Rowell, J A., & Dawson, C J. (1983). Laboratory counter examples and the growth of understanding in science. European Journal of Science Education, 5 (2), 203–216CrossRefGoogle Scholar
Scheibe, I P. (1989). Entwicklung kognitiver Lernmotive [Development of cognitive learning motives]. In J. Lompscher (Ed.), Psychologische Analysen der Lerntätigkeit (pp. 182–230). Berlin: Volk und Wissen
Shayer, M., & Wylam, H. (1981). The development of the concepts of heat and temperature in 10–13 year olds. Journal of Research in Science Teaching, 18 (5), 419–434CrossRefGoogle Scholar
Solomon, J., & Aikenhead, G. (Eds.) (1994). STS Education: International perspectives on reform. New York, London: Teachers College Press
Vosniadou, S., & Ioannides, C. (1998). From conceptual change to science education: A psychological point of view. International Journal of Science Education, 20, 1213–1230CrossRefGoogle Scholar
Vosniadou, S., Ioannides, A., Dimitrakopoulou, A., & Papademetriou, E. (2001). Designing learning environments to promote conceptual change in science. Learning and Instruction, 11(4–5), 381–420CrossRefGoogle Scholar
Weinert, F E., & de Corte, E. (1996). Translating research into practice. In E. de Corte & F E. Weinert (Eds.), International encyclopedia of developmental and instructional psychology (pp. 43–50). Oxford: Elsevier Science
Wiser, M., & Amin, T. (2001). “Is heat hot?” Inducing conceptual change by integrating everyday and scientific perspectives on thermal phenomena. Learning and Instruction 11(4–5), 331–356CrossRefGoogle Scholar
Yager, R., E. (Ed.) (1996). Science, technology, society: A reform in science education. Albany: State University of New York Press

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×