Skip to main content Accessibility help
×
  • Cited by 58
Publisher:
Cambridge University Press
Online publication date:
November 2017
Print publication year:
2017
Online ISBN:
9781139136334

Book description

Understand the relationship between information theory and the physics of wave propagation with this expert guide. Balancing fundamental theory with engineering applications, it describes the mechanism and limits for the representation and communication of information using electromagnetic waves. Information-theoretic laws relating functional approximation and quantum uncertainty principles to entropy, capacity, mutual information, rate distortion, and degrees of freedom of band-limited radiation are derived and explained. Both stochastic and deterministic approaches are explored, and applications for sensing and signal reconstruction, wireless communication, and networks of multiple transmitters and receivers are reviewed. With end-of-chapter exercises and suggestions for further reading enabling in-depth understanding of key concepts, it is the ideal resource for researchers and graduate students in electrical engineering, physics and applied mathematics looking for a fresh perspective on classical information theory.

Reviews

'This is an excellent textbook that ties together information theory and wave theory in a very insightful and understandable way. It is of great value and highly recommended for students, researchers and practitioners. Professor Franceschetti brings a highly valuable textbook based on many years of teaching and research.'

Charles Elachi - California Institute of Technology and Director Emeritus of the Jet Propulsion Laboratory at NASA

'This book is about the physics of information and communication. It could be considered to be an exposition of Shannon information theory, where information is transmitted via electromagnetic waves. Surely Shannon would approve of it.'

Sanjoy K. Mitter - Massachusetts Institute of Technology

'Communication and information are inherently physical. Most of the literature, however, abstracts out the physics, treating them as mathematical or engineering disciplines. Although abstractions are necessary in the design of systems, much is lost in understanding the fundamental limits and how these disciplines fit together with the underlying physics. Franceschetti breaks the disciplinary boundaries, presenting communication and information as physical phenomena in a coherent, mathematically sophisticated, and lucid manner.'

Abbas El Gamal - Stanford University, California

'This is an ambitious and important book … exceedingly well written, and surprisingly thin, given the amount of material. The mathematics, supplemented by considerable intuitive explanation, is never overwhelming, and should be readily followed by the diligent reader. There are extensive references, and a useful summary at the end of each chapter, along with well-crafted exercises. Unquestionably this book will contribute hugely to [Professor] Franceschetti’s goal: ‘to break through the compartmentalized walls of several disciplines’ … any researcher who purports to work on the advancement of wireless communication theory should take time to study Wave Theory of Information.'

Thomas L. Marzetta Source: IEEE Information Theory Society Newsletter

‘Compared to other books, Wave Theory of Information takes a different approach to information theory. It does so by presenting the relationship between information theory and the physics of wave propagation, using electromagnetic waves to describe the representation and communication of information … a textbook for a graduate course in communication and information theory, [it] is intended for PhD students and researchers in electrical engineering.’

Edward S. Krebes Source: The Leading Edge

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

Bibliography
V. R., Algazi, D. J., Sakrison (1969). On the optimality of the Karhunen–Loève expansion. IEEE Transactions on Information Theory, 15 Google Scholar(2), pp. 319–21.
B. C., Barber (1993). The non-isotropic two-dimensional random walk. Waves in Random Media, 3 Google Scholar, pp. 243–56.
W., Beckner (1975). Inequalities in Fourier analysis. Annals of Mathematics, 102 Google Scholar(6), pp. 159–82.
J. D., Bekenstein (1973). Black holes and entropy. Physical Review D, 7 Google Scholar(8), pp. 2333–46.
J. D., Bekenstein (1981a). Universal upper bound on the entropy-to-energy ratio for bounded systems. Physical Review D, 23 Google Scholar(2), pp. 287–98.
J. D., Bekenstein (1981b). Energy cost of information transfer. Physical Review Letters, 46 Google Scholar(10), pp. 623–6.
J. D., Bekenstein (2005). How does the entropy/information bound work? Foundations of Physics Google Scholar, 35, pp. 1805–23.
J. D., Bekenstein, M., Schiffer (1990). Quantum limitations on the storage and transmission of information. International Journal of Modern Physics C, 1 Google Scholar(4), pp. 355–422.
P., Bello (1963). Characterization of randomly time-variant linear channels. IEEE Transactions on Communications, 11 Google Scholar(4), pp. 360–93.
E., Biglieri (2005). Coding for Wireless Channels. Google Scholar Springer.
L., Boltzmann (1872). Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen. Wiener Berichte, 66, pp. 275–370. English translation: S. G., Brush (tr.) (2003 Google Scholar). The Kinetic Theory of Gases. Imperial College Press.
L., Boltzmann (1896–8). Vorlesungen über Gastheorie. J. A., Barth. English translation: S. G., Brush (tr.) (1964). Lectures on Gas Theory Google Scholar. University of California Press.
E., Borel (1897). Sur l' interpolation. Comptes rendus de l'Académie des sciences de Paris, 124 Google Scholar, pp. 673–6.
R., Bousso (2002). The holographic principle. Reviews of Modern Physics, 74 Google Scholar(3), pp. 825–74.
J., Bowen (1967). On the capacity of a noiseless photon channel. IEEE Transactions on Information Theory, 13 Google Scholar(2), pp. 230–6.
H. J., Bremermann (1967). Quantum noise and information. In L. M., Le Cam and J., Neyman Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability Google Scholar. University of California Press.
H. J., Bremermann (1982). Minimum Energy Requirements of Information Transfer and Computing. International Journal of Theoretical Physics, 21 Google Scholar(3–4), pp. 203–217.
J. L., BrownJr (1960). Mean square truncation error in series expansions of random functions. Journal of the Society of Industrial and Applied Mathematics, 8 Google Scholar(1), pp. 28–32.
O. M., Bucci, G., Di Massa (1988). The truncation error in the application of sampling series to electromagnetic problems. IEEE Transactions on Antennas and Propagation, 36 Google Scholar(7), pp. 941–9.
O. M., Bucci, G., Franceschetti (1987). On the spatial bandwidth of scattered fields. IEEE Transactions on Antennas and Propagation, 35 Google Scholar(12), pp. 1445–55.
O. M., Bucci, G., Franceschetti (1989). On the degrees of freedom of scattered fields. IEEE Transactions on Antennas and Propagation, 37 Google Scholar(7), pp. 918–26.
O. M., Bucci, C., Gennarelli, C., Savarese (1998). Representation of electromagnetic fields over arbitrary surfaces by a finite and nonredundant number of samples. IEEE Transactions on Antennas and Propagation, 46 Google Scholar(3), pp. 351–9.
W., Byers (2007). How Mathematicians Think: Using Ambiguity, Contradiction, and Paradox to Create Mathematics. Google Scholar Princeton University Press.
V. R., Cadambe, S. A., Jafar (2008). Interference alignment and degrees of freedom of the K-user interference channel. IEEE Transactions on Information Theory, 54 Google Scholar(8), pp. 3425–41.
E., Candés (2006). Compressive sampling. In M., Sanz-Solé, J., Soria, J. L., Varona, J., Verdera (eds.) Proceedings of the International Congress of Mathematicians Google Scholar, Madrid, Spain.
E., Candés (2008). The restricted isometry property and its implications for compressed sensing. Comptes rendus de l'Académie des sciences. Série I. Mathématique, 346 Google Scholar, pp. 589–92.
E., Candés, J., Romberg, T., Tao (2006). Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 52 Google Scholar(2), pp. 489–509.
E., Candés, M., Wakin (2008). An introduction to compressive sampling. IEEE Signal Processing Magazine, 25 Google Scholar(2), pp. 21–30.
C. M., Caves, P. D., Drummond (1994). Quantum limits on bosonic communication rates. Reviews of Modern Physics, 66 Google Scholar(2), pp. 481–537.
S., Chandrasekhar (1960). Radiative Transfer. Google Scholar Dover.
G. M., Church, Y., Gao, S., Kosuri (2012). Next-generation digital information storage in DNA. Science, 337 Google Scholar, p. 1628.
R., Clausius (1850–65). The Mechanical Theory of Heat – with its Applications to the Steam Engine and to Physical Properties of Bodies. Google Scholar John van Voorst.
J. B., Conway (1990). A Course in Functional Analysis, 2nd edn. Springer Google Scholar.
T. M., Cover (1994). Which processes satisfy the second law? In J. J., Halliwell, J., Perez-Mercader, W. H., Zurek (eds.), Physical Origins of Time Asymmetry. Google Scholar Cambridge University Press, pp. 98–107.
T. M., Cover, J., Thomas (2006). Elements of Information Theory, 2 Google Scholarnd edn. John Wiley & Sons.
M. A., Davenport, M. B., Wakin (2012). Compressive sensing of analog signals using discrete prolate spheroidal sequences. Applied Computational Harmonic Analysis, 33 Google Scholar, pp. 438–72.
A., De Gregorio (2012). On random flights with non-uniformly distributed directions. Journal of Statistical Physics, 147 Google Scholar(2), pp. 382–411.
P., Dirac (1931). Quantised singularities in the electromagnetic field. Proceedings of the Royal Society of London A, 133 Google Scholar, pp. 60–72.
D. L., Donoho (2000). Wald Lecture I: Counting Bits with Shannon and Kolmogorov. Google Scholar Technical report, Stanford University.
D. L., Donoho (2006). Compressed sensing. IEEE Transactions on Information Theory, 52 Google Scholar(4), pp. 1289–1306.
D. L., Donoho, A., Javanmard, A., Montanari (2013). Information-theoretically optimal compressed sensing via spatial coupling and approximate message passing. IEEE Transactions on Information Theory, 59 Google Scholar(11), pp. 7434–64.
D. L., Donoho, P. B., Stark (1989). Uncertainty principles and signal recovery. SIAM Journal of Applied Mathematics, 49 Google Scholar, pp. 906–31.
O., El Ayach, S. W., Peters, R. W., HeathJr (2013). The practical challenges of interference alignment. IEEE Wireless Communications, 20 Google Scholar(1), pp. 35–42.
A. E., Gamal, Y., Kim (2011). Network Information Theory. Google Scholar Cambridge University Press.
K., Falconer (1990). Fractal Geometry: Mathematical Foundations and Applications. Google Scholar John Wiley & Sons.
P., Feng, Y., Bresler (1996a). Spectrum-blind minimum-rate sampling and reconstruction of multi-band signals. Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 3 Google Scholar, pp. 1688–91.
P., Feng, Y., Bresler (1996b). Spectrum-blind minimum-rate sampling and reconstruction of 2D multi-band signals. Proceedings of the IEEE International Conference on Image Processing, 1 Google Scholar, pp. 701–4.
R., Feynman, R., Leighton, M., Sands (1964). The Feynman Lectures on Physics Google Scholar, vols. 1–3. Reprinted 2005. Addison Wesley.
C., Flammer (1957). Spheroidal Wave Functions. Google Scholar Stanford University Press.
G. B., Folland, A., Sitaram (1997). The uncertainty principle: A mathematical survey. Journal of Fourier Analysis and Applications, 3 Google Scholar(3), pp. 207–38.
S., Foucart, H., Rauhut (2013). A Mathematical Introduction to Compressive Sensing. Google Scholar Springer.
G., Franceschetti (1997). Electromagnetics: Theory, Techniques, and Engineering Paradigms. Google Scholar Plenum Press.
M., Franceschetti (2004). Stochastic rays pulse propagation. IEEE Transactions on Antennas and Propagation, 52 Google Scholar(10), pp. 2742–52.
M., Franceschetti (2007a). A note on Levéque and Telatar's upper bound on the capac¬ity of wireless ad hoc networks. IEEE Transactions on Information Theory, 53 Google Scholar(9), pp. 3207–11.
M., Franceschetti (2007b). When a random walk of fixed length can lead uniformly anywhere inside a hypersphere. Journal of Statistical Physics, 127 Google Scholar, pp. 813–23.
M., Franceschetti (2015). On Landau's eigenvalue theorem and information cut-sets. IEEE Transactions on Information Theory, 61 Google Scholar(9), pp. 5042–51.
M., Franceschetti (2017). Quantum limits on the entropy of bandlimited radiation. Journal of Statistical Physics, 169 Google Scholar(2), pp. 374–94.
M., Franceschetti, J., Bruck, L. J., Schulman (2004). A random walk model of wave propagation. IEEE Transactions on Antennas and Propagation, 52 Google Scholar(5), pp. 1304–17.
M., Franceschetti, O., Dousse, D., Tse, P., Thiran (2007). Closing the gap in the capacity of wireless networks via percolation theory. IEEE Transactions on Information Theory, 53 Google Scholar(3), pp. 1009–18.
M., Franceschetti, R., Meester (2007). Random Networks for Communication. Google Scholar Cambridge University Press.
M., Franceschetti, M. D., Migliore, P., Minero (2009). The capacity of wireless networks: Information-theoretic and physical limits. IEEE Transactions on Information Theory, 55 Google Scholar(8), pp. 3413–24.
M., Franceschetti, M. D., Migliore, P., Minero, F., Schettino (2011). The degrees of freedom of wireless networks via cut-set integrals. IEEE Transactions on Information Theory, 57 Google Scholar(11), pp. 3067–79.
M., Franceschetti, M. D., Migliore, P., Minero, F., Schettino (2015). The information carried by scattered waves: Near-field and non-asymptotic regimes. IEEE Transactions on Antennas and Propagation, 63 Google Scholar(7), pp. 3144–57.
D., Gabor (1946). Theory of communication. Journal of the Institution of Electrical Engineers, Part III: Radio and Communication Engineering, 93 Google Scholar, pp. 429–57.
D., Gabor (1953). Communication theory and physics. IRE Professional Group on Information Theory, 1 Google Scholar(1), pp. 48–59.
D., Gabor (1961). Light and information. In E., Wolf (ed.), Progress in Optics. Elsevier, vol. I Google Scholar, pp. 109–53.
R. G., Gallager (1968). Information Theory and Reliable Communication. Google Scholar John Wiley & Sons.
R. G., Gallager (2008). Principles of Digital Communication. Google Scholar Cambridge University Press.
A. G., Garcia (2000). Orthogonal sampling formulas: A unified approach. SIAM Review, 42 Google Scholar(3), pp. 499–512.
J., Ghaderi, L.-L., Xie, X., Shen (2009). Hierarchical cooperation in ad hoc networks: Optimal clustering and achievable throughput. IEEE Transactions on Information Theory, 55 Google Scholar(8), pp. 3425–36.
W., Gibbs (1902). Elementary Principles of Statistical Mechanics Developed with Especial Reference to the Rational Foundation of Thermodynamics. Google Scholar Reprinted 1960, Dover.
A., Goldsmith (2005). Wireless Communications. Google Scholar Cambridge University Press.
J. P., Gordon (1962). Quantum effects in communication systems. Proceedings of the IRE, 50 Google Scholar(9), pp. 1898–908.
C. C., Grosjean (1953). Solution of the non-isotropic random flight problem in the k-dimensional space. Physica, 19 Google Scholar, pp. 29–45.
P., Gupta, P. R., Kumar (2000). The capacity of wireless networks. IEEE Transactions on Information Theory, 42 Google Scholar(2), pp. 388–404.
M., Haenggi (2013). Stochastic Geometry for Wireless Networks. Google Scholar Cambridge University Press.
M., Haenggi, J., Andrews, F., Baccelli, O., Dousse, M., Franceschetti (2009). Stochastic geometry and random graphs for the analysis and design of wireless networks. IEEE Journal on Selected Areas in Communications, 27 Google Scholar(7), pp. 1029–46.
S., W. Hawking (1975). Particle creation by black holes. Communications in Mathematical Physics, 43 Google Scholar, pp. 199–220.
W., Heisenberg (1927). Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Zeitschrift für Physik, 43 Google Scholar, pp. 172–98. English translation: In J. A. Wheeler, W.
H., Zurek (eds.) (1983). Quantum Theory and Measurement Google Scholar. Princeton University Press, pp. 62–84.
W., Heitler (1954). The Quantum Theory of Radiation, 3 Google Scholarrd edn. Reprinted 2000. Dover.
J. R., Higgins (1985). Five short stories about the cardinal series. Bulletin of the American Mathematical Society, 12 Google Scholar(1), pp. 46–89.
D., Hilbert, R., Courant (1953). Methods of Mathematical Physics. Vols. 1 Google Scholar, & 2, 2nd edn. Springer.
I. I., Hirschman, Jr (1957). A note on entropy. American Journal of Mathematics, 79 Google Scholar, pp. 152–6.
J. A., Hogan, J. D., Lakey (2012). Duration and Bandwidth Limiting: Prolate Functions, Sampling, and Applications. Google Scholar Birkhäuser.
A., Holevo (1973). Bounds for the quantity of information transmitted by a quantum communica-tion channel. Problems of Information Transmission, 9 Google Scholar, pp. 177–83.
S. N., Hong, G., Caire (2015). Beyond scaling laws: On the rate performance of dense device-to-device wireless networks. IEEE Transactions on Information Theory, 61 Google Scholar(9), pp. 4735–50.
B. D., Hughes (1995). Random Walks and Random Environments. Volume I: Random Walks. Google Scholar Oxford University Press.
A., Ishimaru (1978). Wave Propagation and Scattering in Random Media. Google Scholar IEEE Press.
S., Izu, J., Lakey (2009). Time–frequency localization and sampling of multiband signals. Acta Applicandae Mathematicae, 107 Google Scholar(1), pp. 399–435.
J. D., Jackson (1962). Classical Electrodynamics. Google Scholar John Wiley & Sons.
S. A., Jafar (2011). Interference alignment: A new look at signal dimensions in a communication network. Foundations and Trends in Communications and Information Theory, 7 Google Scholar(1), pp. 1–134.
D., Jagerman (1969) entropy and approximation of bandlimited functions. SIAM Journal on Applied Mathematics, 17 Google Scholar(2), pp. 362–77.
D., Jagerman (1970). Information theory and approximation of bandlimited functions. Bell Systems Technical Journal, 49 Google Scholar(8), pp. 1911–41.
R., Janaswamy (2011). On the EM degrees of freedom in scattering environments. IEEE Transanctions on Antennas and Propagation, 59 Google Scholar(10), pp. 3872–81.
E. T., Jaynes (1965). Gibbs vs. Boltzmann entropies. Americal Journal of Physics, 33 Google Scholar(5), pp. 391–8.
E. T., Jaynes (1982). On the rationale of maximum entropy methods. Proceedings of the IEEE, 70 Google Scholar, pp. 939–52.
A., Jerri (1977). The Shannon sampling theorem – its various extensions and applications: A tutorial review. Proceedings of the IEEE, 65 Google Scholar(11), pp. 1565–96.
M., Kac, W. L., Murdock, G., Szegö. (1953). On the eigenvalues of certain Hermitian forms. Journal of Rational Mechanics and Analysis, 2 Google Scholar, pp. 767–800.
T., Kawabata, A., Dembo (1994). The rate–distortion dimension of sets and measures. IEEE Transactions on Information Theory, 40 Google Scholar(5), pp. 1564–72.
E. H., Kennard (1927). Zur Quantenmechanik einfacher Bewegungstypen. Zeitschrift für Physik, 44 Google Scholar(4–5), pp. 326–52.
R. A., Kennedy, P., Sadeghi, T. D., Abhayapala, H. M., Jones (2007). Intrinsic limits of dimensionality and richness in random multipath fields. IEEE Transactions on Signal Processing, 55 Google Scholar(6), pp. 2542–56.
C., Kittel, H., Kroemer (1980). Thermal Physics Google Scholar, 2nd edn. W. H. Freeman & Co.
J. J., Knab (1979). Interpolation of bandlimited functions using the approximate prolate series. IEEE Transactions on Information Theory, 25 Google Scholar(6), pp. 717–19.
J. J., Knab (1983). The sampling window. IEEE Transactions on Information Theory, 29 Google Scholar(1), pp. 157–9.
A. N., Kolmogorov (1936). Über die beste Annäherung von Funktionen einer gegebenen Funktionenklasse. Annals of Mathematics, 37 Google Scholar(1), no. 1, pp. 107–10 (in German).
A. N., Kolmogorov (1956). On certain asymptotic characteristics of completely bounded metric spaces. Uspekhi Matematicheskikh Nauk, 108 Google Scholar(3), pp. 385–8 (in Russian).
A. N., Kolmogorov, S. V., Formin (1954). Elements of the Theory of Functions and Functional Analysis, vols. 1 Google Scholar, 2. Graylock.
A. N., Kolmogorov, V. M., Tikhomirov (1959). -entropy and -capacity of sets in functional spaces. Uspekhi Matematicheskikh Nauk, 14(2), pp. 3–86. English translation: (1961 Google Scholar). American Mathematical Society Translation Series, 2(17), pp. 277–364.
V. A., Kotelnikov (1933). On the transmission capacity of “ether” and wire in electrocommunica¬tions. Proceedings of the First All-Union Conference on Questions of Communication, January 1933. English translation reprint in J. J., Benedetto, P. J. S. G., Ferreira (eds.) (2000), Modern Sampling Theory: Mathematics and Applications Google Scholar, Birkhauser.
M., Lachmann, M. E., Newman, C., Moore (2004). The physical limits of communication or why any sufficiently advanced technology is indistinguishable from noise. American Journal of Physics, 72 Google Scholar(10), pp. 1290–3.
H. J., Landau (1975). On Szegö's eigenvalue distribution theorem and non-Hermitian kernels. Journal d'Analyse Mathematique, 28 Google Scholar, pp. 335–57.
H. J., Landau (1985). An overview of time and frequency limiting. In J. F., Prince (ed.), Fourier Techniques and Applications. Google Scholar Plenum Press, pp. 201–20.
M. D., Landau, W., Jones (1983). A Hardy old problem. Mathematics Magazine, 56 Google Scholar(4), pp. 230–2.
H. J., Landau, H. O., Pollak (1961). Prolate spheroidal wave functions, Fourier analysis and uncertainty, II. Bell Systems Technical Journal, 40 Google Scholar, pp. 65–84.
H. J., Landau, H. O., Pollak (1962). Prolate spheroidal wave functions, Fourier analysis and uncertainty, III. Bell Systems Technical Journal, 41 Google Scholar, pp. 1295–336.
H. J., Landau, H., Widom (1980). Eigenvalue distribution of time and frequency limiting. Journal of Mathematical Analysis and Applications, 77 Google Scholar(2), pp. 469–81.
A., Lapidoth (2009). A Foundation in Digital Communication. Google Scholar Cambridge University Press.
P. S., Laplace (1774). Mémoires de Mathématique et de Physique, Tome Sixiéme. English translation: S. M., Stigler (tr.) (1986). Memoir on the probability of causes of events. Statistical Science, 1 Google Scholar(19), pp. 364–78.
D. S., Lebedev, L. B., Levitin (1966). Information transmission by electromagnetic field. Information and Control, 9 Google Scholar, pp. 1–22.
G., Le Caër (2010). A Pearson–Dirichlet random walk. Journal of Statistical Physics, 140 Google Scholar, pp. 728–51.
G., Le Caër (2011). A new family of solvable Pearson–Dirichlet random walks. Journal of Statistical Physics, 144 Google Scholar, pp. 23–45.
E. A., Lee (2017). Plato and the Nerd. The Creative Partnership of Humans and Technology. Google Scholar MIT Press.
S. H., Lee and S. Y., Chung (2012). Capacity scaling of wireless ad hoc networks: Shannon meets Maxwell. IEEE Transactions on Information Theory, 58 Google Scholar(3), pp. 1702–15.
O., Lévêque, E., Telatar (2005). Information theoretic upper bounds on the capacity of large extended ad hoc wireless networks. IEEE Transactions on Information Theory, 51 Google Scholar(3), pp. 858–65.
C. T., Li, A., Özgür (2016) Channel diversity needed for vector space interference alignment. IEEE Transactions on Information Theory, 62 Google Scholar(4), pp. 1942–56.
T. J., Lim, M., Franceschetti (2017a Google Scholar). Deterministic coding theorems for blind sensing: Optimal measurement rate and fractal dimension. arXiv: 1708.05769.
T. J., Lim, M., Franceschetti (2017b). Information without rolling dice. IEEE Transactions on Information Theory, 63 Google Scholar(3), pp. 1349–63.
G., Lorentz (1986). Approximation of Functions, 2 Google Scholarnd edn. AMS Chelsea Publishing.
S., Loth, S., Baumann, C. P., Lutz, D. M., Eigler, A. J., Heinrich (2012). Bistability in atomic-scale antiferromagnets. Science, 335 Google Scholar, pp. 196–9.
R., Loudon (2000). The Quantum Theory of Light, 3 Google Scholarrd edn. Oxford University Press.
M., Masoliver, J. M., Porrá, G. H., Weiss (1993). Some two-and three-dimensional persistent random walks. Physica A, 193 Google Scholar, pp. 469–82.
J. K., Maxwell (1873). A treatise on electricity and magnetism. Google Scholar Reprinted 1998, Oxford University Press.
N., Merhav (2010). Statistical physics and information theory. Foundations and Trends in Communications and Information Theory, 6 Google Scholar(1–2), pp. 1–212.
M., Mézard, A., Montanari (2009). Information, Physics, and Computation. Google Scholar Oxford University Press.
D. A. B., Miller (2000). Communicating with waves between volumes: Evaluating orthogonal spatial channels and limits on coupling strengths. Applied Optics, 39 Google Scholar(11), pp. 1681–99.
M., Mishali, Y., Eldar (2009). Blind multi-band signal reconstruction: Compressed sensing for analog signals. IEEE Transactions on Signal Processing, 57 Google Scholar(3), pp. 993–1009.
C. R., Moon, L. S., Mattos, B. K., Foster, G., Zeltzer, H. C., Manoharan (2009). Quantum holographic encoding in a two-dimensional electron gas. Nature Nanotechnology, 4 Google Scholar, pp. 167–72.
B., Nazer, M., Gastpar, S. A., Jafar, S., Vishwanath (2012). Ergodic interference alignment. IEEE Transactions on Information Theory, 58 Google Scholar(10), pp. 6355–71.
H., Nyquist (1928). Thermal agitations of electric charges in conductors. Physical Review, 32 Google Scholar, pp. 110–13.
B. M., Oliver (1965). Thermal and quantum noise. Proceedings of the IEEE, 53 Google Scholar(5), pp. 436–54.
F. W. J., Olver, D. W., Lozier, R. F., Boisvert, C. W., Clark (eds.) (2010). National Institute of Standards Handbook of Mathematical Functions. Google Scholar Cambridge University Press.
A., Özgür, O., Lévêque, D. N. C., Tse (2007). Hierarchical cooperation achieves optimal capacity scaling in ad hoc networks. IEEE Transactions on Information Theory, 53 Google Scholar(10), pp. 3549–72.
A., Özgür, O., Lévêque, D. N. C., Tse (2013). Spatial degrees of freedom of large distributed MIMO systems and wireless ad hoc networks. IEEE Journal on Selected Areas in Communications, 31 Google Scholar(2), pp. 202–14.
C. H., Papas (1965). Theory of Electromagnetic Wave Propagation. Google Scholar Dover.
G. C., Papen, R. E., Blahut (2018). Lightwave Communication Systems. Google Scholar Preprint, to be published by Cambridge University Press.
J. B., Pendry (1983). Quantum limits to the flow of information and entropy. Journal of Physics A: Mathematical and General, 16 Google Scholar, pp. 2161–71.
R., Piestun, D. A. B., Miller (2000). Electromagnetic degrees of freedom of an optical system. Journal of the Optical Society America, 17 Google Scholar(5), pp. 892–902.
A., Pinkus (1985). n-Widths in Approximation Theory. Google Scholar Springer.
A. A., Pogorui, R. M., Rodriguez-Dagnino (2011). Isotropic random motion at finite speed with k-Erlang distributed direction alternations. Journal of Statistical Physics, 145 Google Scholar, pp. 102–12.
A. S. Y., Poon, R. W., Brodersen, D. N. C., Tse (2005). Degrees of freedom in multiple-antenna channels: A signal space approach. IEEE Transactions on Information Theory, 51 Google Scholar(2), pp. 523–36.
J., Proakis, M., Salehi (2007). Digital Communications. Google Scholar McGraw-Hill.
M., Reed, B., Simon (1980). Functional Analysis. Google Scholar Elsevier.
A., Rényi (1959). On the dimension and entropy of probability distributions. Acta Mathematica Hungarica, 10 Google Scholar(1–2), pp. 193–215.
A., Rényi (1985). A Diary on Information Theory. Google Scholar John Wiley & Sons.
F., Riesz, B., Sz.-Nagy (1955). Functional Analysis. Google Scholar Ungar.
M., Schiffer (1991). Quantum limit for information transmission. Physical Review A, 43 Google Scholar(10), pp. 5337–43.
E., Schmidt (1907). Zur Theorie der linearen und nichtlinearen Integralgleichungen. Mathematis¬che Annalen, 63 Google Scholar, pp. 433–76.
C. E., Shannon (1948). A mathematical theory of communication. Bell System Technical Journal, 27 Google Scholar, pp. 379–423, 623–56.
C. E., Shannon (1949). Communication in the presence of noise. Proceedings of the IRE, 37 Google Scholar, pp. 10–21.
D., Slepian (1964). Prolate spheroidal wave functions, Fourier analysis and uncertainty, IV. Extensions to many dimensions: Generalized prolate spheroidal functions. Bell Systems Technical Journal, 43 Google Scholar, pp. 3009–58.
D., Slepian (1965). Some asymptotic expansions for prolate spheroidal wave functions. Journal of Mathematics and Physics, 44 Google Scholar, pp. 99–140.
D., Slepian (1976). On bandwidth. Proceedings of the IEEE, 64 Google Scholar(3), pp. 292–300.
D., Slepian (1978). Prolate spheroidal wave functions, Fourier analysis and uncertainty, V. The discrete case. Bell Systems Technical Journal, 57 Google Scholar, pp. 1371–430.
D., Slepian (1983). Some comments on Fourier analysis, uncertainty and modeling. SIAM Review, 25 Google Scholar(3), pp. 379–93.
D., Slepian, H. O., Pollak (1961). Prolate spheroidal wave functions, Fourier analysis and uncertainty, I. Bell Systems Technical Journal, 40 Google Scholar, pp. 43–64.
W., Stadje (1987). The exact probability distribution of a two-dimensional random walk. Journal of Statistical Physics, 46 Google Scholar, pp. 207–16.
T. E., Stern (1960). Some quantum effects in information channels. IEEE Transactions on Information Theory, 6 Google Scholar, pp. 435–40.
G. W., Stewart (1993). On the early history of the singular value decomposition. SIAM Review, 35 Google Scholar(4), pp. 551–66.
J. A., Stratton (1941). Electromagnetic Theory. Google Scholar McGraw-Hill.
A., Strominger, C., Vafa (1996). Microscopic origin of the Bekenterin–Hawking entropy. Physics Letters B, 379 Google Scholar(1), pp. 99–104.
L., Susskind (1995). The world as a hologram. Journal of Mathematical Physics, 36 Google Scholar(11), pp. 6377–96.
T., Tao (2012). Topics in Random Matrix Theory. Graduate Studies in Mathematics, vol. 132 Google Scholar. American Mathematical Society.
G., 't Hooft (1993). Dimensional reduction in quantum gravity. In A., Ali, J., Ellis, S., Randjbar-Daemi (eds.), Salamfestschrift: A Collection of Talks from the Conference on Highlights of Particle and Condensed Matter Physics, World Scientific Series in 20th Century Physics, vol. 4 Google Scholar. World Scientific.
G., Toraldo di Francia (1955). Resolving power and information. Journal of the Optical Society of America, 45 Google Scholar(7), pp. 497–501.
G., Toraldo di Francia (1969). Degrees of freedom of an image. Journal of the Optical Society of America, 59 Google Scholar(7), pp. 799–804.
D. N. C., Tse, P., Visvanath (2005). Fundamentals of Wireless Communication. Google Scholar Cambridge University Press.
A., Tulino, S., Verdú (2004). Random matrix theory and wireless communications. Foundations and Trends in Communications and Information Theory, 1 Google Scholar(1) pp. 1–182.
V., Twersky (1957). On multiple scattering and reflection of waves by rough surfaces. IRE Transactions on Antennas and Propagation, 5 Google Scholar,p. 81.
V., Twersky (1964). On propagation in random media of discrete scatterers. Proceedings of the American Mathematical Society Symposium on Stochastic Processes in Mathematics, Physics, and Engineering, 16 Google Scholar, pp. 84–116.
J., Uffink (2008). Boltzmann's work in statistical physics. In E. N., Zalta (ed.), The Stanford Encyclopedia of Philosophy Google Scholar, Winter 2008 edn. Published online.
M., Unser (2000). Sampling – 50 years after Shannon. Proceedings of the IEEE, 88 Google Scholar(4), pp. 569–87.
O., Vallée, M., Soares (2010). Airy Functions and Applications to Physics. Google Scholar World Scientific.
J., Van Bladel (1985). Electromagnetic Fields. Google Scholar Hemisphere.
R., Venkataramani, Y., Bresler (1998). Further results on spectrum blind sampling of 2D signals. Proceedings of the IEEE International Conference on Image Processing, 2 Google Scholar, pp. 752–6.
M., Vetterli, J, Kovacevi cambridge c, V., Goyal (2014a). Foundations of Signal Processing. Google Scholar University Press.
M., Vetterli, J, Kovac, V., Goyal (2014b). Fourier and Wavelet Signal Processing. Google Scholar Cambridge cevi´University Press.
A. J., Viterbi (1995). CDMA: Principles of Spread Spectrum Communication. Google Scholar Addison Wesley.
H., Weyl (1928). Gruppentheorie und Quantenmechanik. Google Scholar S. Hirzel.
E. T., Whittaker (1915). On the functions which are represented by the expansions of the interpolation theory. Proceedings of the Royal Society of Edinburgh, 35 Google Scholar, pp. 181–94.
H., Widom (1964). Asymptotic behavior of the eigenvalues of certain integral equations II. Archive for Rational Mechanics and Analysis, 17 Google Scholar(3), pp. 215–29.
Y., Wu, S., Verdú (2010). Rényi information dimension: Fundamental limits of almost lossless analog compression. IEEE Transactions on Information Theory, 56 Google Scholar(8), pp. 3721–48.
Y., Wu, S., Verdú (2012). Optimal phase transitions in compressed sensing. IEEE Transactions on Information Theory, 58 Google Scholar(10), pp. 6241–63.
A., Wyner (1965). Capacity of the band-limited Gaussian channel. Bell Systems Technical Journal, 45 Google Scholar, pp. 359–95.
A., Wyner (1973). A bound on the number of distinguishable functions which are time-limited and approximately band-limited. SIAM Journal of Applied Mathematics, 24 Google Scholar(3), pp. 289–97.
L. L., Xie, P. R., Kumar (2004). A network information theory for wireless communication: Scaling laws and optimal operation. IEEE Transactions on Information Theory, 50 Google Scholar(5), pp. 748–67.
H., Yuen, M., Ozawa (1993). Ultimate information carrying limit of quantum systems. Physical Review Letters, 70 Google Scholar(4), pp. 363–6.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 10710 *
Loading metrics...

Book summary page views

Total views: 10384 *
Loading metrics...

* Views captured on Cambridge Core between 30th November 2017 - 15th April 2025. This data will be updated every 24 hours.

Usage data cannot currently be displayed.