Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-16T13:23:50.418Z Has data issue: false hasContentIssue false

Bibliography

Published online by Cambridge University Press:  30 November 2017

Massimo Franceschetti
Affiliation:
University of California, San Diego
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

V. R., Algazi, D. J., Sakrison (1969). On the optimality of the Karhunen–Loève expansion. IEEE Transactions on Information Theory, 15(2), pp. 319–21.Google Scholar
B. C., Barber (1993). The non-isotropic two-dimensional random walk. Waves in Random Media, 3, pp. 243–56.Google Scholar
W., Beckner (1975). Inequalities in Fourier analysis. Annals of Mathematics, 102(6), pp. 159–82.Google Scholar
J. D., Bekenstein (1973). Black holes and entropy. Physical Review D, 7(8), pp. 2333–46.Google Scholar
J. D., Bekenstein (1981a). Universal upper bound on the entropy-to-energy ratio for bounded systems. Physical Review D, 23(2), pp. 287–98.Google Scholar
J. D., Bekenstein (1981b). Energy cost of information transfer. Physical Review Letters, 46(10), pp. 623–6.Google Scholar
J. D., Bekenstein (2005). How does the entropy/information bound work? Foundations of Physics, 35, pp. 1805–23.Google Scholar
J. D., Bekenstein, M., Schiffer (1990). Quantum limitations on the storage and transmission of information. International Journal of Modern Physics C, 1(4), pp. 355–422.Google Scholar
P., Bello (1963). Characterization of randomly time-variant linear channels. IEEE Transactions on Communications, 11(4), pp. 360–93.Google Scholar
E., Biglieri (2005). Coding for Wireless Channels. Springer.Google Scholar
L., Boltzmann (1872). Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen. Wiener Berichte, 66, pp. 275–370. English translation: S. G., Brush (tr.) (2003). The Kinetic Theory of Gases. Imperial College Press.Google Scholar
L., Boltzmann (1896–8). Vorlesungen über Gastheorie. J. A., Barth. English translation: S. G., Brush (tr.) (1964). Lectures on Gas Theory. University of California Press.Google Scholar
E., Borel (1897). Sur l' interpolation. Comptes rendus de l'Académie des sciences de Paris, 124, pp. 673–6.Google Scholar
R., Bousso (2002). The holographic principle. Reviews of Modern Physics, 74(3), pp. 825–74.Google Scholar
J., Bowen (1967). On the capacity of a noiseless photon channel. IEEE Transactions on Information Theory, 13(2), pp. 230–6.Google Scholar
H. J., Bremermann (1967). Quantum noise and information. In L. M., Le Cam and J., Neyman Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability. University of California Press.Google Scholar
H. J., Bremermann (1982). Minimum Energy Requirements of Information Transfer and Computing. International Journal of Theoretical Physics, 21(3–4), pp. 203–217.Google Scholar
J. L., BrownJr (1960). Mean square truncation error in series expansions of random functions. Journal of the Society of Industrial and Applied Mathematics, 8(1), pp. 28–32.Google Scholar
O. M., Bucci, G., Di Massa (1988). The truncation error in the application of sampling series to electromagnetic problems. IEEE Transactions on Antennas and Propagation, 36(7), pp. 941–9.Google Scholar
O. M., Bucci, G., Franceschetti (1987). On the spatial bandwidth of scattered fields. IEEE Transactions on Antennas and Propagation, 35(12), pp. 1445–55.Google Scholar
O. M., Bucci, G., Franceschetti (1989). On the degrees of freedom of scattered fields. IEEE Transactions on Antennas and Propagation, 37(7), pp. 918–26.Google Scholar
O. M., Bucci, C., Gennarelli, C., Savarese (1998). Representation of electromagnetic fields over arbitrary surfaces by a finite and nonredundant number of samples. IEEE Transactions on Antennas and Propagation, 46(3), pp. 351–9.Google Scholar
W., Byers (2007). How Mathematicians Think: Using Ambiguity, Contradiction, and Paradox to Create Mathematics. Princeton University Press.Google Scholar
V. R., Cadambe, S. A., Jafar (2008). Interference alignment and degrees of freedom of the K-user interference channel. IEEE Transactions on Information Theory, 54(8), pp. 3425–41.Google Scholar
E., Candés (2006). Compressive sampling. In M., Sanz-Solé, J., Soria, J. L., Varona, J., Verdera (eds.) Proceedings of the International Congress of Mathematicians, Madrid, Spain.Google Scholar
E., Candés (2008). The restricted isometry property and its implications for compressed sensing. Comptes rendus de l'Académie des sciences. Série I. Mathématique, 346, pp. 589–92.Google Scholar
E., Candés, J., Romberg, T., Tao (2006). Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 52(2), pp. 489–509.Google Scholar
E., Candés, M., Wakin (2008). An introduction to compressive sampling. IEEE Signal Processing Magazine, 25(2), pp. 21–30.Google Scholar
C. M., Caves, P. D., Drummond (1994). Quantum limits on bosonic communication rates. Reviews of Modern Physics, 66(2), pp. 481–537.Google Scholar
S., Chandrasekhar (1960). Radiative Transfer. Dover.Google Scholar
G. M., Church, Y., Gao, S., Kosuri (2012). Next-generation digital information storage in DNA. Science, 337, p. 1628.Google Scholar
R., Clausius (1850–65). The Mechanical Theory of Heat – with its Applications to the Steam Engine and to Physical Properties of Bodies. John van Voorst.
J. B., Conway (1990). A Course in Functional Analysis, 2nd edn. Springer.Google Scholar
T. M., Cover (1994). Which processes satisfy the second law? In J. J., Halliwell, J., Perez-Mercader, W. H., Zurek (eds.), Physical Origins of Time Asymmetry. Cambridge University Press, pp. 98–107.Google Scholar
T. M., Cover, J., Thomas (2006). Elements of Information Theory, 2nd edn. John Wiley & Sons.
M. A., Davenport, M. B., Wakin (2012). Compressive sensing of analog signals using discrete prolate spheroidal sequences. Applied Computational Harmonic Analysis, 33, pp. 438–72.Google Scholar
A., De Gregorio (2012). On random flights with non-uniformly distributed directions. Journal of Statistical Physics, 147(2), pp. 382–411.Google Scholar
P., Dirac (1931). Quantised singularities in the electromagnetic field. Proceedings of the Royal Society of London A, 133, pp. 60–72.Google Scholar
D. L., Donoho (2000). Wald Lecture I: Counting Bits with Shannon and Kolmogorov. Technical report, Stanford University.Google Scholar
D. L., Donoho (2006). Compressed sensing. IEEE Transactions on Information Theory, 52(4), pp. 1289–1306.Google Scholar
D. L., Donoho, A., Javanmard, A., Montanari (2013). Information-theoretically optimal compressed sensing via spatial coupling and approximate message passing. IEEE Transactions on Information Theory, 59(11), pp. 7434–64.Google Scholar
D. L., Donoho, P. B., Stark (1989). Uncertainty principles and signal recovery. SIAM Journal of Applied Mathematics, 49, pp. 906–31.Google Scholar
O., El Ayach, S. W., Peters, R. W., HeathJr (2013). The practical challenges of interference alignment. IEEE Wireless Communications, 20(1), pp. 35–42.Google Scholar
A. E., Gamal, Y., Kim (2011). Network Information Theory. Cambridge University Press.Google Scholar
K., Falconer (1990). Fractal Geometry: Mathematical Foundations and Applications. John Wiley & Sons.Google Scholar
P., Feng, Y., Bresler (1996a). Spectrum-blind minimum-rate sampling and reconstruction of multi-band signals. Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 3, pp. 1688–91.Google Scholar
P., Feng, Y., Bresler (1996b). Spectrum-blind minimum-rate sampling and reconstruction of 2D multi-band signals. Proceedings of the IEEE International Conference on Image Processing, 1, pp. 701–4.Google Scholar
R., Feynman, R., Leighton, M., Sands (1964). The Feynman Lectures on Physics, vols. 1–3. Reprinted 2005. Addison Wesley.Google Scholar
C., Flammer (1957). Spheroidal Wave Functions. Stanford University Press.Google Scholar
G. B., Folland, A., Sitaram (1997). The uncertainty principle: A mathematical survey. Journal of Fourier Analysis and Applications, 3(3), pp. 207–38.Google Scholar
S., Foucart, H., Rauhut (2013). A Mathematical Introduction to Compressive Sensing. Springer.Google Scholar
G., Franceschetti (1997). Electromagnetics: Theory, Techniques, and Engineering Paradigms. Plenum Press.Google Scholar
M., Franceschetti (2004). Stochastic rays pulse propagation. IEEE Transactions on Antennas and Propagation, 52(10), pp. 2742–52.Google Scholar
M., Franceschetti (2007a). A note on Levéque and Telatar's upper bound on the capac¬ity of wireless ad hoc networks. IEEE Transactions on Information Theory, 53(9), pp. 3207–11.Google Scholar
M., Franceschetti (2007b). When a random walk of fixed length can lead uniformly anywhere inside a hypersphere. Journal of Statistical Physics, 127, pp. 813–23.Google Scholar
M., Franceschetti (2015). On Landau's eigenvalue theorem and information cut-sets. IEEE Transactions on Information Theory, 61(9), pp. 5042–51.Google Scholar
M., Franceschetti (2017). Quantum limits on the entropy of bandlimited radiation. Journal of Statistical Physics, 169(2), pp. 374–94.Google Scholar
M., Franceschetti, J., Bruck, L. J., Schulman (2004). A random walk model of wave propagation. IEEE Transactions on Antennas and Propagation, 52(5), pp. 1304–17.Google Scholar
M., Franceschetti, O., Dousse, D., Tse, P., Thiran (2007). Closing the gap in the capacity of wireless networks via percolation theory. IEEE Transactions on Information Theory, 53(3), pp. 1009–18.Google Scholar
M., Franceschetti, R., Meester (2007). Random Networks for Communication. Cambridge University Press.Google Scholar
M., Franceschetti, M. D., Migliore, P., Minero (2009). The capacity of wireless networks: Information-theoretic and physical limits. IEEE Transactions on Information Theory, 55(8), pp. 3413–24.Google Scholar
M., Franceschetti, M. D., Migliore, P., Minero, F., Schettino (2011). The degrees of freedom of wireless networks via cut-set integrals. IEEE Transactions on Information Theory, 57(11), pp. 3067–79.Google Scholar
M., Franceschetti, M. D., Migliore, P., Minero, F., Schettino (2015). The information carried by scattered waves: Near-field and non-asymptotic regimes. IEEE Transactions on Antennas and Propagation, 63(7), pp. 3144–57.Google Scholar
D., Gabor (1946). Theory of communication. Journal of the Institution of Electrical Engineers, Part III: Radio and Communication Engineering, 93, pp. 429–57.Google Scholar
D., Gabor (1953). Communication theory and physics. IRE Professional Group on Information Theory, 1(1), pp. 48–59.Google Scholar
D., Gabor (1961). Light and information. In E., Wolf (ed.), Progress in Optics. Elsevier, vol. I, pp. 109–53.Google Scholar
R. G., Gallager (1968). Information Theory and Reliable Communication. John Wiley & Sons.Google Scholar
R. G., Gallager (2008). Principles of Digital Communication. Cambridge University Press.Google Scholar
A. G., Garcia (2000). Orthogonal sampling formulas: A unified approach. SIAM Review, 42(3), pp. 499–512.Google Scholar
J., Ghaderi, L.-L., Xie, X., Shen (2009). Hierarchical cooperation in ad hoc networks: Optimal clustering and achievable throughput. IEEE Transactions on Information Theory, 55(8), pp. 3425–36.Google Scholar
W., Gibbs (1902). Elementary Principles of Statistical Mechanics Developed with Especial Reference to the Rational Foundation of Thermodynamics. Reprinted 1960, Dover.Google Scholar
A., Goldsmith (2005). Wireless Communications. Cambridge University Press.Google Scholar
J. P., Gordon (1962). Quantum effects in communication systems. Proceedings of the IRE, 50(9), pp. 1898–908.Google Scholar
C. C., Grosjean (1953). Solution of the non-isotropic random flight problem in the k-dimensional space. Physica, 19, pp. 29–45.Google Scholar
P., Gupta, P. R., Kumar (2000). The capacity of wireless networks. IEEE Transactions on Information Theory, 42(2), pp. 388–404.Google Scholar
M., Haenggi (2013). Stochastic Geometry for Wireless Networks. Cambridge University Press.Google Scholar
M., Haenggi, J., Andrews, F., Baccelli, O., Dousse, M., Franceschetti (2009). Stochastic geometry and random graphs for the analysis and design of wireless networks. IEEE Journal on Selected Areas in Communications, 27(7), pp. 1029–46.Google Scholar
S., W. Hawking (1975). Particle creation by black holes. Communications in Mathematical Physics, 43, pp. 199–220.Google Scholar
W., Heisenberg (1927). Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Zeitschrift für Physik, 43, pp. 172–98. English translation: In J. A. Wheeler, W.Google Scholar
H., Zurek (eds.) (1983). Quantum Theory and Measurement. Princeton University Press, pp. 62–84.Google Scholar
W., Heitler (1954). The Quantum Theory of Radiation, 3rd edn. Reprinted 2000. Dover.Google Scholar
J. R., Higgins (1985). Five short stories about the cardinal series. Bulletin of the American Mathematical Society, 12(1), pp. 46–89.Google Scholar
D., Hilbert, R., Courant (1953). Methods of Mathematical Physics. Vols. 1, & 2, 2nd edn. Springer.Google Scholar
I. I., Hirschman, Jr (1957). A note on entropy. American Journal of Mathematics, 79, pp. 152–6.Google Scholar
J. A., Hogan, J. D., Lakey (2012). Duration and Bandwidth Limiting: Prolate Functions, Sampling, and Applications. Birkhäuser.Google Scholar
A., Holevo (1973). Bounds for the quantity of information transmitted by a quantum communica-tion channel. Problems of Information Transmission, 9, pp. 177–83.Google Scholar
S. N., Hong, G., Caire (2015). Beyond scaling laws: On the rate performance of dense device-to-device wireless networks. IEEE Transactions on Information Theory, 61(9), pp. 4735–50.Google Scholar
B. D., Hughes (1995). Random Walks and Random Environments. Volume I: Random Walks. Oxford University Press.Google Scholar
A., Ishimaru (1978). Wave Propagation and Scattering in Random Media. IEEE Press.Google Scholar
S., Izu, J., Lakey (2009). Time–frequency localization and sampling of multiband signals. Acta Applicandae Mathematicae, 107(1), pp. 399–435.Google Scholar
J. D., Jackson (1962). Classical Electrodynamics. John Wiley & Sons.Google Scholar
S. A., Jafar (2011). Interference alignment: A new look at signal dimensions in a communication network. Foundations and Trends in Communications and Information Theory, 7(1), pp. 1–134.Google Scholar
D., Jagerman (1969) entropy and approximation of bandlimited functions. SIAM Journal on Applied Mathematics, 17(2), pp. 362–77.Google Scholar
D., Jagerman (1970). Information theory and approximation of bandlimited functions. Bell Systems Technical Journal, 49(8), pp. 1911–41.Google Scholar
R., Janaswamy (2011). On the EM degrees of freedom in scattering environments. IEEE Transanctions on Antennas and Propagation, 59(10), pp. 3872–81.Google Scholar
E. T., Jaynes (1965). Gibbs vs. Boltzmann entropies. Americal Journal of Physics, 33(5), pp. 391–8.Google Scholar
E. T., Jaynes (1982). On the rationale of maximum entropy methods. Proceedings of the IEEE, 70, pp. 939–52.Google Scholar
A., Jerri (1977). The Shannon sampling theorem – its various extensions and applications: A tutorial review. Proceedings of the IEEE, 65(11), pp. 1565–96.Google Scholar
M., Kac, W. L., Murdock, G., Szegö. (1953). On the eigenvalues of certain Hermitian forms. Journal of Rational Mechanics and Analysis, 2, pp. 767–800.Google Scholar
T., Kawabata, A., Dembo (1994). The rate–distortion dimension of sets and measures. IEEE Transactions on Information Theory, 40(5), pp. 1564–72.Google Scholar
E. H., Kennard (1927). Zur Quantenmechanik einfacher Bewegungstypen. Zeitschrift für Physik, 44(4–5), pp. 326–52.Google Scholar
R. A., Kennedy, P., Sadeghi, T. D., Abhayapala, H. M., Jones (2007). Intrinsic limits of dimensionality and richness in random multipath fields. IEEE Transactions on Signal Processing, 55(6), pp. 2542–56.Google Scholar
C., Kittel, H., Kroemer (1980). Thermal Physics, 2nd edn. W. H. Freeman & Co.Google Scholar
J. J., Knab (1979). Interpolation of bandlimited functions using the approximate prolate series. IEEE Transactions on Information Theory, 25(6), pp. 717–19.Google Scholar
J. J., Knab (1983). The sampling window. IEEE Transactions on Information Theory, 29(1), pp. 157–9.Google Scholar
A. N., Kolmogorov (1936). Über die beste Annäherung von Funktionen einer gegebenen Funktionenklasse. Annals of Mathematics, 37(1), no. 1, pp. 107–10 (in German).Google Scholar
A. N., Kolmogorov (1956). On certain asymptotic characteristics of completely bounded metric spaces. Uspekhi Matematicheskikh Nauk, 108(3), pp. 385–8 (in Russian).Google Scholar
A. N., Kolmogorov, S. V., Formin (1954). Elements of the Theory of Functions and Functional Analysis, vols. 1, 2. Graylock.Google Scholar
A. N., Kolmogorov, V. M., Tikhomirov (1959). -entropy and -capacity of sets in functional spaces. Uspekhi Matematicheskikh Nauk, 14(2), pp. 3–86. English translation: (1961). American Mathematical Society Translation Series, 2(17), pp. 277–364.Google Scholar
V. A., Kotelnikov (1933). On the transmission capacity of “ether” and wire in electrocommunica¬tions. Proceedings of the First All-Union Conference on Questions of Communication, January 1933. English translation reprint in J. J., Benedetto, P. J. S. G., Ferreira (eds.) (2000), Modern Sampling Theory: Mathematics and Applications, Birkhauser.Google Scholar
M., Lachmann, M. E., Newman, C., Moore (2004). The physical limits of communication or why any sufficiently advanced technology is indistinguishable from noise. American Journal of Physics, 72(10), pp. 1290–3.Google Scholar
H. J., Landau (1975). On Szegö's eigenvalue distribution theorem and non-Hermitian kernels. Journal d'Analyse Mathematique, 28, pp. 335–57.Google Scholar
H. J., Landau (1985). An overview of time and frequency limiting. In J. F., Prince (ed.), Fourier Techniques and Applications. Plenum Press, pp. 201–20.Google Scholar
M. D., Landau, W., Jones (1983). A Hardy old problem. Mathematics Magazine, 56(4), pp. 230–2.Google Scholar
H. J., Landau, H. O., Pollak (1961). Prolate spheroidal wave functions, Fourier analysis and uncertainty, II. Bell Systems Technical Journal, 40, pp. 65–84.Google Scholar
H. J., Landau, H. O., Pollak (1962). Prolate spheroidal wave functions, Fourier analysis and uncertainty, III. Bell Systems Technical Journal, 41, pp. 1295–336.Google Scholar
H. J., Landau, H., Widom (1980). Eigenvalue distribution of time and frequency limiting. Journal of Mathematical Analysis and Applications, 77(2), pp. 469–81.Google Scholar
A., Lapidoth (2009). A Foundation in Digital Communication. Cambridge University Press.Google Scholar
P. S., Laplace (1774). Mémoires de Mathématique et de Physique, Tome Sixiéme. English translation: S. M., Stigler (tr.) (1986). Memoir on the probability of causes of events. Statistical Science, 1(19), pp. 364–78.Google Scholar
D. S., Lebedev, L. B., Levitin (1966). Information transmission by electromagnetic field. Information and Control, 9, pp. 1–22.Google Scholar
G., Le Caër (2010). A Pearson–Dirichlet random walk. Journal of Statistical Physics, 140, pp. 728–51.Google Scholar
G., Le Caër (2011). A new family of solvable Pearson–Dirichlet random walks. Journal of Statistical Physics, 144, pp. 23–45.Google Scholar
E. A., Lee (2017). Plato and the Nerd. The Creative Partnership of Humans and Technology. MIT Press.Google Scholar
S. H., Lee and S. Y., Chung (2012). Capacity scaling of wireless ad hoc networks: Shannon meets Maxwell. IEEE Transactions on Information Theory, 58(3), pp. 1702–15.Google Scholar
O., Lévêque, E., Telatar (2005). Information theoretic upper bounds on the capacity of large extended ad hoc wireless networks. IEEE Transactions on Information Theory, 51(3), pp. 858–65.Google Scholar
C. T., Li, A., Özgür (2016) Channel diversity needed for vector space interference alignment. IEEE Transactions on Information Theory, 62(4), pp. 1942–56.Google Scholar
T. J., Lim, M., Franceschetti (2017a). Deterministic coding theorems for blind sensing: Optimal measurement rate and fractal dimension. arXiv: 1708.05769.
T. J., Lim, M., Franceschetti (2017b). Information without rolling dice. IEEE Transactions on Information Theory, 63(3), pp. 1349–63.Google Scholar
G., Lorentz (1986). Approximation of Functions, 2nd edn. AMS Chelsea Publishing.
S., Loth, S., Baumann, C. P., Lutz, D. M., Eigler, A. J., Heinrich (2012). Bistability in atomic-scale antiferromagnets. Science, 335, pp. 196–9.Google Scholar
R., Loudon (2000). The Quantum Theory of Light, 3rd edn. Oxford University Press.
M., Masoliver, J. M., Porrá, G. H., Weiss (1993). Some two-and three-dimensional persistent random walks. Physica A, 193, pp. 469–82.Google Scholar
J. K., Maxwell (1873). A treatise on electricity and magnetism. Reprinted 1998, Oxford University Press.
N., Merhav (2010). Statistical physics and information theory. Foundations and Trends in Communications and Information Theory, 6(1–2), pp. 1–212.Google Scholar
M., Mézard, A., Montanari (2009). Information, Physics, and Computation. Oxford University Press.Google Scholar
D. A. B., Miller (2000). Communicating with waves between volumes: Evaluating orthogonal spatial channels and limits on coupling strengths. Applied Optics, 39(11), pp. 1681–99.Google Scholar
M., Mishali, Y., Eldar (2009). Blind multi-band signal reconstruction: Compressed sensing for analog signals. IEEE Transactions on Signal Processing, 57(3), pp. 993–1009.Google Scholar
C. R., Moon, L. S., Mattos, B. K., Foster, G., Zeltzer, H. C., Manoharan (2009). Quantum holographic encoding in a two-dimensional electron gas. Nature Nanotechnology, 4, pp. 167–72.Google Scholar
B., Nazer, M., Gastpar, S. A., Jafar, S., Vishwanath (2012). Ergodic interference alignment. IEEE Transactions on Information Theory, 58(10), pp. 6355–71.Google Scholar
H., Nyquist (1928). Thermal agitations of electric charges in conductors. Physical Review, 32, pp. 110–13.Google Scholar
B. M., Oliver (1965). Thermal and quantum noise. Proceedings of the IEEE, 53(5), pp. 436–54.Google Scholar
F. W. J., Olver, D. W., Lozier, R. F., Boisvert, C. W., Clark (eds.) (2010). National Institute of Standards Handbook of Mathematical Functions. Cambridge University Press.Google Scholar
A., Özgür, O., Lévêque, D. N. C., Tse (2007). Hierarchical cooperation achieves optimal capacity scaling in ad hoc networks. IEEE Transactions on Information Theory, 53(10), pp. 3549–72.Google Scholar
A., Özgür, O., Lévêque, D. N. C., Tse (2013). Spatial degrees of freedom of large distributed MIMO systems and wireless ad hoc networks. IEEE Journal on Selected Areas in Communications, 31(2), pp. 202–14.Google Scholar
C. H., Papas (1965). Theory of Electromagnetic Wave Propagation. Dover.Google Scholar
G. C., Papen, R. E., Blahut (2018). Lightwave Communication Systems. Preprint, to be published by Cambridge University Press.Google Scholar
J. B., Pendry (1983). Quantum limits to the flow of information and entropy. Journal of Physics A: Mathematical and General, 16, pp. 2161–71.Google Scholar
R., Piestun, D. A. B., Miller (2000). Electromagnetic degrees of freedom of an optical system. Journal of the Optical Society America, 17(5), pp. 892–902.Google Scholar
A., Pinkus (1985). n-Widths in Approximation Theory. Springer.Google Scholar
A. A., Pogorui, R. M., Rodriguez-Dagnino (2011). Isotropic random motion at finite speed with k-Erlang distributed direction alternations. Journal of Statistical Physics, 145, pp. 102–12.Google Scholar
A. S. Y., Poon, R. W., Brodersen, D. N. C., Tse (2005). Degrees of freedom in multiple-antenna channels: A signal space approach. IEEE Transactions on Information Theory, 51(2), pp. 523–36.Google Scholar
J., Proakis, M., Salehi (2007). Digital Communications. McGraw-Hill.Google Scholar
M., Reed, B., Simon (1980). Functional Analysis. Elsevier.Google Scholar
A., Rényi (1959). On the dimension and entropy of probability distributions. Acta Mathematica Hungarica, 10(1–2), pp. 193–215.Google Scholar
A., Rényi (1985). A Diary on Information Theory. John Wiley & Sons.Google Scholar
F., Riesz, B., Sz.-Nagy (1955). Functional Analysis. Ungar.Google Scholar
M., Schiffer (1991). Quantum limit for information transmission. Physical Review A, 43(10), pp. 5337–43.Google Scholar
E., Schmidt (1907). Zur Theorie der linearen und nichtlinearen Integralgleichungen. Mathematis¬che Annalen, 63, pp. 433–76.Google Scholar
C. E., Shannon (1948). A mathematical theory of communication. Bell System Technical Journal, 27, pp. 379–423, 623–56.Google Scholar
C. E., Shannon (1949). Communication in the presence of noise. Proceedings of the IRE, 37, pp. 10–21.Google Scholar
D., Slepian (1964). Prolate spheroidal wave functions, Fourier analysis and uncertainty, IV. Extensions to many dimensions: Generalized prolate spheroidal functions. Bell Systems Technical Journal, 43, pp. 3009–58.Google Scholar
D., Slepian (1965). Some asymptotic expansions for prolate spheroidal wave functions. Journal of Mathematics and Physics, 44, pp. 99–140.Google Scholar
D., Slepian (1976). On bandwidth. Proceedings of the IEEE, 64(3), pp. 292–300.Google Scholar
D., Slepian (1978). Prolate spheroidal wave functions, Fourier analysis and uncertainty, V. The discrete case. Bell Systems Technical Journal, 57, pp. 1371–430.Google Scholar
D., Slepian (1983). Some comments on Fourier analysis, uncertainty and modeling. SIAM Review, 25(3), pp. 379–93.Google Scholar
D., Slepian, H. O., Pollak (1961). Prolate spheroidal wave functions, Fourier analysis and uncertainty, I. Bell Systems Technical Journal, 40, pp. 43–64.Google Scholar
W., Stadje (1987). The exact probability distribution of a two-dimensional random walk. Journal of Statistical Physics, 46, pp. 207–16.Google Scholar
T. E., Stern (1960). Some quantum effects in information channels. IEEE Transactions on Information Theory, 6, pp. 435–40.Google Scholar
G. W., Stewart (1993). On the early history of the singular value decomposition. SIAM Review, 35(4), pp. 551–66.Google Scholar
J. A., Stratton (1941). Electromagnetic Theory. McGraw-Hill.Google Scholar
A., Strominger, C., Vafa (1996). Microscopic origin of the Bekenterin–Hawking entropy. Physics Letters B, 379(1), pp. 99–104.Google Scholar
L., Susskind (1995). The world as a hologram. Journal of Mathematical Physics, 36(11), pp. 6377–96.Google Scholar
T., Tao (2012). Topics in Random Matrix Theory. Graduate Studies in Mathematics, vol. 132. American Mathematical Society.Google Scholar
G., 't Hooft (1993). Dimensional reduction in quantum gravity. In A., Ali, J., Ellis, S., Randjbar-Daemi (eds.), Salamfestschrift: A Collection of Talks from the Conference on Highlights of Particle and Condensed Matter Physics, World Scientific Series in 20th Century Physics, vol. 4. World Scientific.Google Scholar
G., Toraldo di Francia (1955). Resolving power and information. Journal of the Optical Society of America, 45(7), pp. 497–501.Google Scholar
G., Toraldo di Francia (1969). Degrees of freedom of an image. Journal of the Optical Society of America, 59(7), pp. 799–804.Google Scholar
D. N. C., Tse, P., Visvanath (2005). Fundamentals of Wireless Communication. Cambridge University Press.Google Scholar
A., Tulino, S., Verdú (2004). Random matrix theory and wireless communications. Foundations and Trends in Communications and Information Theory, 1(1) pp. 1–182.Google Scholar
V., Twersky (1957). On multiple scattering and reflection of waves by rough surfaces. IRE Transactions on Antennas and Propagation, 5,p. 81.Google Scholar
V., Twersky (1964). On propagation in random media of discrete scatterers. Proceedings of the American Mathematical Society Symposium on Stochastic Processes in Mathematics, Physics, and Engineering, 16, pp. 84–116.Google Scholar
J., Uffink (2008). Boltzmann's work in statistical physics. In E. N., Zalta (ed.), The Stanford Encyclopedia of Philosophy, Winter 2008 edn. Published online.Google Scholar
M., Unser (2000). Sampling – 50 years after Shannon. Proceedings of the IEEE, 88(4), pp. 569–87.Google Scholar
O., Vallée, M., Soares (2010). Airy Functions and Applications to Physics. World Scientific.Google Scholar
J., Van Bladel (1985). Electromagnetic Fields. Hemisphere.Google Scholar
R., Venkataramani, Y., Bresler (1998). Further results on spectrum blind sampling of 2D signals. Proceedings of the IEEE International Conference on Image Processing, 2, pp. 752–6.Google Scholar
M., Vetterli, J, Kovacevi cambridge c, V., Goyal (2014a). Foundations of Signal Processing. University Press.Google Scholar
M., Vetterli, J, Kovac, V., Goyal (2014b). Fourier and Wavelet Signal Processing. Cambridge cevi´University Press.Google Scholar
A. J., Viterbi (1995). CDMA: Principles of Spread Spectrum Communication. Addison Wesley.Google Scholar
H., Weyl (1928). Gruppentheorie und Quantenmechanik. S. Hirzel.Google Scholar
E. T., Whittaker (1915). On the functions which are represented by the expansions of the interpolation theory. Proceedings of the Royal Society of Edinburgh, 35, pp. 181–94.Google Scholar
H., Widom (1964). Asymptotic behavior of the eigenvalues of certain integral equations II. Archive for Rational Mechanics and Analysis, 17(3), pp. 215–29.Google Scholar
Y., Wu, S., Verdú (2010). Rényi information dimension: Fundamental limits of almost lossless analog compression. IEEE Transactions on Information Theory, 56(8), pp. 3721–48.Google Scholar
Y., Wu, S., Verdú (2012). Optimal phase transitions in compressed sensing. IEEE Transactions on Information Theory, 58(10), pp. 6241–63.Google Scholar
A., Wyner (1965). Capacity of the band-limited Gaussian channel. Bell Systems Technical Journal, 45, pp. 359–95.Google Scholar
A., Wyner (1973). A bound on the number of distinguishable functions which are time-limited and approximately band-limited. SIAM Journal of Applied Mathematics, 24(3), pp. 289–97.Google Scholar
L. L., Xie, P. R., Kumar (2004). A network information theory for wireless communication: Scaling laws and optimal operation. IEEE Transactions on Information Theory, 50(5), pp. 748–67.Google Scholar
H., Yuen, M., Ozawa (1993). Ultimate information carrying limit of quantum systems. Physical Review Letters, 70(4), pp. 363–6.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Bibliography
  • Massimo Franceschetti, University of California, San Diego
  • Book: Wave Theory of Information
  • Online publication: 30 November 2017
  • Chapter DOI: https://doi.org/10.1017/9781139136334.022
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Bibliography
  • Massimo Franceschetti, University of California, San Diego
  • Book: Wave Theory of Information
  • Online publication: 30 November 2017
  • Chapter DOI: https://doi.org/10.1017/9781139136334.022
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Bibliography
  • Massimo Franceschetti, University of California, San Diego
  • Book: Wave Theory of Information
  • Online publication: 30 November 2017
  • Chapter DOI: https://doi.org/10.1017/9781139136334.022
Available formats
×