Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-16T12:38:05.307Z Has data issue: false hasContentIssue false

20 - Insights from agent-based modelling to simulate whale-watching tours

Influence of captains’ strategy on whale exposure and excursion content

from Part IV - Sustainable management: insights and issues

Published online by Cambridge University Press:  05 April 2014

Clément Chion
Affiliation:
Université de Montréal
Jacques-André Landry
Affiliation:
University of Québec
Lael Parrott
Affiliation:
Université de Montréal
Danielle Marceau
Affiliation:
University of Calgary
Philippe Lamontagne
Affiliation:
National Research Council Canada, Research & Development, Ottawa, Ontario, Canada
Samuel Turgeon
Affiliation:
Université de Montréal
Robert Michaud
Affiliation:
Group for Research and Education on Marine Mammals (GREMM), Québec, Canada
Cristiane C. A. Martins
Affiliation:
Université de Montréal
Nadia Ménard
Affiliation:
Parks Canada, Saguenay St-LawrenceMarine Park, Tadoussac (Québec), Canada
Guy Cantin
Affiliation:
Fisheries and Oceans Canada, Oceans Management Division,Mont-Joli (Québec), Canada
Suzan Dionne
Affiliation:
Parks Canada, Natural Resource Conservation, Haute-Ville, Québec, Canada
James Higham
Affiliation:
University of Otago, New Zealand
Lars Bejder
Affiliation:
Murdoch University, Western Australia
Rob Williams
Affiliation:
University of St Andrews, Scotland
Get access

Summary

Introduction

Multi-agent models can bear several names depending on the field they were initially developed in (e.g. agent-based model in social science, individual-based model in ecology). Agent- and individual-based models (ABMs and IBMs) are becoming tools of choice to simulate complex social–ecological systems (Gimblett, 2002; Janssen & Ostrom, 2006; Monticino et al., 2007; Bennett & McGinnis, 2008). The recent development of dedicated programming platforms and libraries has also contributed to the expansion of multi-agent models coupled with geographic information systems (GIS) (Railsback et al., 2006). Such models have been applied in a wide variety of natural resource management contexts where heterogeneous actors interact, including rangeland management in arid zones (Gross et al., 2006), management of water use and access in river basins (Schlüter & Pahl-Wostl, 2007), control of irrigation channels (van Oel et al., 2010), agriculture management (Manson, 2005), and forest clearing for agriculture (Moreno et al., 2007). ABMs have also been used to support national parks and recreation areas' managers by simulating visitor movements to predict over-crowded areas along vehicular routes and hiking trails (Itami et al., 2003), or along riverside rest areas and attraction sites for rafting trips on the Colorado River (Roberts et al., 2002).

Type
Chapter
Information
Whale-watching
Sustainable Tourism and Ecological Management
, pp. 293 - 306
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beauchamp, J., Bouchard, H., de Margerie, P., Otis, N. & Savaria, J.-Y. (2009). Recovery strategy for the blue whale (Balaenoptera musculus), Northwest Atlantic population, in Canada [FINAL]. Ottawa: Fisheries and Oceans Canada, 62 pp.
Bennett, D.A. & McGinnis, D. (2008). Coupled and complex: Human–environment interaction in the Greater Yellowstone Ecosystem, USA. Geoforum 39, 833–845.CrossRefGoogle Scholar
Chion, C. (2011). An agent-based model for the sustainable management of navigation activities in the Saint Lawrence estuary. PhD Thesis, École de technologie supérieure.
Chion, C., Turgeon, S., Michaud, R., Landry, J.-A. & Parrott, L. (2009). Portrait de la Navigation dans le Parc Marin du Saguenay–Saint-Laurent. Caractérisation des activités sans prélèvement de ressources entre le 1er mai et le 31 octobre 2007. Report presented to Parks Canada. Montréal: École de technologie supérieure and Université de Montréal, 86 pp.
Chion, C., Lamontagne, P., Turgeon, S., et al. (2011). Eliciting cognitive processes underlying patterns of human–wildlife interactions for agent-based modelling. Ecological Modelling 222(14), 2213–2226.CrossRefGoogle Scholar
COSEWIC (2005). COSEWIC assessment and update status report on the fin whale Balaenoptera physalus in Canada. Ottawa: Committee on the Status of Endangered Wildlife in Canada, ix + 37 pp.
Couzin, I.D., Krause, J., Franks, N.R. & Levin, S.A. (2005). Effective leadership and decision-making in animal groups on the move. Nature 433(7025), 513–516.CrossRefGoogle ScholarPubMed
Demers, A., Bouchard, H. & Beauchamp, J. (2011). Recovery strategy for the beluga (Delphinapterus leucas), St. Lawrence Estuary population, in Canada [PROPOSED]. Ottawa: Fisheries and Oceans Canada, 88 + X pp.
Dionne, S. (2001). Saguenay–St. Lawrence Marine Park Ecosystem Conservation Plan Summary. Quebec: Parks Canada.
Giard, J. & Michaud, R. (1997). L’observation des rorquals sous surveillance par la telemetrie VHF. Le Naturaliste Canadien 121, 25–29.Google Scholar
Gigerenzer, G. & Goldstein, D.G. (1996). Reasoning the fast and frugal way: Models of bounded rationality. Psychological Review 103(4), 650–669.CrossRefGoogle ScholarPubMed
Gigerenzer, G. & Selten, R. (2001). Bounded Rationality: The adaptive toolbox. Cambridge, MA: The MIT Press.Google Scholar
Gimblett, H.R. (2002). Integrating Geographic Information Systems and Agent-Based Modeling Techniques for Simulating Social and Ecological Processes. Santa Fe, NM: Oxford University Press.Google Scholar
Gimblett, H.R., Richards, M.T. & Itami, B. (2002). Simulating wildland recreation use and conflicting spatial interactions using rule-driven intelligent agents. In Integrating Geographic Information Systems and Agent-based Modeling Techniques for Simulating Social Ecological Processes. Santa Fe, NM: Oxford University Press, pp. 211–243.Google Scholar
Giroul, C., Ouellet, G. & Soubrier, R. (2000). Étude des attentes de la clientèle des croisières aux baleines dans le secteur du parc marin du Saguenay–Saint-Laurent: Faits saillants. Presented to Parks Canada. Université du Québec à Trois-Rivières, 56 pp.
Grimm, V., Revilla, E., Berger, U., et al. (2005). Pattern-oriented modeling of agent-based complex systems: Lessons from ecology. Science 310, 987–991.CrossRefGoogle ScholarPubMed
Gross, J., McAllister, R., Abel, N., Smith, D. & Maru, Y. (2006). Australian rangelands as complex adaptive systems: A conceptual model and preliminary results. Environmental Modelling & Software 21, 1264–1272.CrossRefGoogle Scholar
Groupe de recherche et d’éducation sur les mammifères marins (GREMM) (2007). Recensement visuel et photographique systématique des grands rorquals dans le parc marin du Saguenay–Saint-Laurent – Projet pilote 2006. Final report presented to Parks Canada. Tadoussac (Qc), Canada.
Guénette, S. & Alder, J. (2007). Lessons from marine protected areas and integrated ocean management initiatives in Canada. Coastal Management 35, 51–78.CrossRefGoogle Scholar
Itami, R., Raulings, R., MacLaren, G., et al. (2003). RBSim 2: Simulating the complex interactions between human movement and outdoor recreation environment. Journal for Nature Conservation 11, 278–286.CrossRefGoogle Scholar
Janssen, M.A. & Ostrom, E. (2006). Empirically based, agent-based models. Ecology and Society 11(2), 37.CrossRefGoogle Scholar
Klein, G.A. (2008). Naturalistic decision making. Human Factors 50(3), 456–460.CrossRefGoogle ScholarPubMed
Klein, G.A., Calderwood, R. & MacGregor, D. (1989). Critical decision method for eliciting knowledge. IEEE Transactions of Systems, Man and Cybernetics 19(3), 462–472.CrossRefGoogle Scholar
Lamontagne, P. (2009). Modélisation spatio-temporelle orientée par patrons avec une approche basée sur individus. Master in Engineering, École de technologie supérieure.
Lemieux Lefebvre, S. (2009). Déplacements et patrons de résidence chez la population de bélugas (Delphinapterus leucas) de l'estuaire du St-Laurent. Master, Université du Québec à Rimouski.
Manson, S.M. (2005). Agent-based modeling and genetic programming for modeling land change in the Southern Yucatan Peninsular Region of Mexico. Agriculture Ecosystems & Environment 111, 47–62.CrossRefGoogle Scholar
Michaud, R. & Giard, J. (1997). Les rorquals communs et les activités d'observation en mer dans l'estuaire du Saint-Laurent entre 1994 et 1996: 1) Étude de l'utilisation du territoire et évaluation de l'exposition aux activités d'observation à l'aide de la télémétrie VHF. Joint project from the GREMM, ministère de l’Environnement et Faune du Québec, Fisheries and Oceans Canada, Heritage Canada, and Parks Canada. Group for Research and Education on Marine Mammals (GREMM), Tadoussac (Qc), Canada. 30 pp.
Michaud, R. and Giard, J. (1998). Les rorquals communs et les activités d'observation en mer dans l'estuaire maritime du Saint-Laurent entre 1994 et 1996: 2) Évaluation de l'impact des activités d'observation en mer sur le comportement des rorquals communs. Joint project from the GREMM, ministère de l’Environnement et Faune du Québec, Fisheries and Oceans Canada, Heritage Canada, and Parks Canada. Group for Research and Education on Marine Mammals (GREMM), Tadoussac (Qc), Canada. 22 pp.
Michaud, R., Bédard, C., Mingelbier, M. & Gilbert, M.-C. (1997). Whale watching activities at sea in the St. Lawrence marine estuary, 1985–1996: A study of spatial distribution of activities and factors favouring boat aggregation at whale watching sites. Final report submitted to Parks Canada. Le Groupe de Recherche et d’Éducation sur les Mammifères Marins, GREMM, Tadoussac, Québec, Canada.
Michaud, R., D'Arcy, M.-H., de la Chenelière, V. & Moisan, M. (2008). Les activités d'observation en mer (AOM) dans l'estuaire du Saint-Laurent: Zone de Protection Marine Estuaire du Saint-Laurent et Parc Marin du Saguenay–Saint-Laurent – Suivi annuel 2007. Final report submitted to Parks Canada. Tadoussac: GREMM, 71 pp.
Monticino, M., Acevedo, M., Callicott, B., Cogdill, T. & Lindquist, C. (2007). Coupled human and natural systems: A multi-agent-based approach. Environmental Modelling & Software 22, 656–663.CrossRefGoogle Scholar
Moreno, N., Quintero, R., Ablan, M., et al. (2007). Biocomplexity of deforestation in the Caparo tropical forest reserve in Venezuela: An integrated multi-agent and cellular automata model. Environmental Modelling & Software 22, 664–673.CrossRefGoogle Scholar
Parks Canada (2002). Marine Activities in the Saguenay–St. Lawrence Marine Park Regulations: Saguenay–St. Lawrence Marine Park Act. Canada: Parks Canada.Google Scholar
Parrott, L., Chion, C., Martins, C.C.A., et al. (2011). A decision support system to assist the sustainable management of navigation activities in the St. Lawrence River Estuary, Canada. Environmental Modelling & Software 26(12), 1403–1418.CrossRefGoogle Scholar
Railsback, S.F., Lytinen, S.L. & Jackson, S.K. (2006). Agent-based simulation platforms: Review and development recommendations. Simulation 89(9), 609–623.CrossRefGoogle Scholar
Roberts, C.A., Stallman, D. & Bieri, J.A. (2002). Modeling complex human–environment interactions: The Grand Canyon river trip simulator. Ecological Modelling 153, 181–196.CrossRefGoogle Scholar
Schlüter, M. & Pahl-Wostl, C. (2007). Mechanisms of resilience in common-pool resource management systems: An agent-based model of water use in a river basin. Ecology and Society 12(2), art. 4.CrossRefGoogle Scholar
Simon, H.A. (1957). Models of Man: Social and rational. New York, NY: Wiley.Google Scholar
Turchin, P. (1998). Quantitative Analysis of Movement: Measuring and modeling population redistribution in animals and plants. Sunderland, MA: Sinauer.Google Scholar
van Oel, P.R., Krol, M.S., Hoekstra, A.Y. & Taddei, R.R. (2010). Feedback mechanisms between water availability and water use in a semi-arid river basin: A spatially explicit multi-agent simulation approach. Environmental Modelling & Software 25, 433–443.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×