Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-21T10:01:48.430Z Has data issue: false hasContentIssue false

8 - On the Tension between Ontology and Epistemology in Quantum Probabilities

from Part III - Probability, Correlations, and Information

Published online by Cambridge University Press:  04 July 2017

Olimpia Lombardi
Affiliation:
University of Buenos Aires, Argentina, and National Council of Scientific and Technical Research
Sebastian Fortin
Affiliation:
University of Buenos Aires, Argentina, and National Council of Scientific and Technical Research
Federico Holik
Affiliation:
National University of La Plata, Argentina, and National Council of Scientific and Technical Research
Cristian López
Affiliation:
University of Buenos Aires, Argentina, and National Council of Scientific and Technical Research
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aharonov, Y. and Albert, D. (1981). “Can We Make Sense of the Measurement Process in Relativistic Quantum Mechanics?Physical Review D, 24: 359370.Google Scholar
Aharonov, Y., Anandan, J., and Vaidman, L. (1993). “Meaning of the Wave Function.” Physical Review A, 47: 46164626.Google Scholar
Albert, D. (1983). “On Quantum Mechanical Automata.” Physics Letters A, 98: 249252.Google Scholar
Albert, D. (2000). Time and Chance. Cambridge, MA: Harvard University Press.Google Scholar
Aspect, A., Grangier, P., and Roger, G. (1982). “Experimental Realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment: A New Violation of Bell’s Inequalities.” Physical Review Letters, 49: 9194.Google Scholar
Bell, J. (1987). “The Theory of Local Beables.” Pp. 5262; “How to Teach Special Relativity.” Pp. 6780 in Speakable and Unspeakable in Quantum. Cambridge: Cambridge University Press.Google Scholar
Bell, J. (1990). “Against Measurement.” Pp. 1732 in Miller, A. (ed.), Sixty-Two Years of Uncertainty. New York: Plenum Press.Google Scholar
Beller, M. (1999). Quantum Dialogues. Chicago: University of Chicago Press.Google Scholar
Bohr, N. (1983). “Discussion with Einstein on Epistemological Problems in Atomic Physics.” Pp. 949 in Wheeler, J. and Zurek, W. (eds.), Quantum Theory and Measurement. Princeton, NJ: Princeton University Press.Google Scholar
Bohr, N. and Rosenfeld, L. (1957). “On the Question of the Measurability of Electromagnetic Field Quantities.” Pp. 357400 in Cohen, R. and Stachel, J. (eds.), The Selected Papers of Leon Rosenfeld. Dordrecht: Reidel [1933].Google Scholar
Born, M. (1926). “Zur Quantenmechanik der Stossvorgänge.” Zeitschrift für Physik, 37: 863867.Google Scholar
Bricmont, J. (1996). “Science of Chaos or Chaos in Science.” Pp. 113175 in Gross, P. et al. (eds.), The Flight from Science and Reason. New York: The New York Academy of Science.Google Scholar
Bronstein, M. (1936). “Quantentheorie Schwacher Gravitationsfelder.” Physikalische Zeitschrift der Sowjetunion, 9: 140157.Google Scholar
Brown, H. and Redhead, M. (1981). “A Critique of the Disturbance Theory of the Indeterminacy of Quantum Mechanics.” Foundations of Physics, 11: 120.CrossRefGoogle Scholar
Buks, E., Schuster, E., Heiblum, M., Mahalu, D., and Umansky, V. (1998). “Dephasing in Electron Interference by a ‘Which-Path’ Detector.” Nature, 391: 871874.Google Scholar
Busch, P., Heinoen, T., and Lahti, P. J. (2007). “Heisenberg’s Uncertainty Principle.” Physics Reports, 452: 155176.Google Scholar
Carazza, B. and Kragh, H. (1995). “Heisenberg’s Lattice World: The 1930 Theory Sketch.” American Journal of Physics, 63: 595605.Google Scholar
Caves, C., Fuchs, C., and Schack, R. (2002). “Quantum Probabilities as Bayesian Probabilities.” Physical Review A, 65: 022305.Google Scholar
Darrigol, O. (1992). From C-numbers to Q-numbers: The Classical Analogy in the History of Quantum Theory. Berkeley: University of California Press.CrossRefGoogle Scholar
de Finetti, B. (1980). “Foresight. Its Logical Laws, Its Subjective Sources.” Pp. 53118 in Kyburg, H. E. Jr. and Smokler, H. E. (eds.), Studies in Subjective Probability. Huntington, NY: Robert E. Krieger Publishing Company [1937].Google Scholar
Dirac, P. (1927). “The Physical Interpretation of Quantum Dynamics.” Proceedings of the Royal Society of London A, 118: 621641.Google Scholar
Dirac, P. (1929). “Quantum Mechanics of Many Electron Systems.” Proceedings of the Royal Society of London A, 123: 714733.Google Scholar
Dirac, P. (1938). “Classical Theory of Radiating Electrons.” Proceedings of the Royal Society of London A, 167: 148169.Google Scholar
Dirac, P. (1963). “The Evolution of the Physicist’s Picture of Nature.” Scientific American, 208: 4553.Google Scholar
Duncan, A. and Janssen, M. (2013). “(Never) Mind Your p’s and q’s: Von Neumann versus Jordan on the Foundations of Quantum Theory.” European Journal of Physics H, 38: 175259.Google Scholar
Earman, J. and Redei, M. (1996). “Why Ergodic Theory Does not Explain the Success of Equilibrium Statistical Mechanics.” British Journal of Philosophy of Science, 47: 6378.CrossRefGoogle Scholar
Feynman, R. (1965). The Character of Physical Law. Cambridge, MA: MIT Press.Google Scholar
Feynman, R. and Hibbs, A. R. (1965). Quantum Mechanics and Path Integrals. New York: Dover Publications.Google Scholar
Fredkin, E. (1990). “Digital Mechanics: An Informational Process Based on Reversible Universal Cellular Automata.” Physica D, 45: 254270.Google Scholar
Frigg, R. (2007). “Probability in Boltzmannian Statistical Mechanics.” Pp. 92118 in Ernst, G. and Üttemann, H. (eds.), Time, Chance and Reduction, Philosophical Aspects of Statistical Mechanics. Cambridge: Cambridge University Press.Google Scholar
Gieser, S. (2005). The Innermost Kernel: Depth Psychology and Quantum Physics: Wolfgang Pauli’s Dialogue with C.G. Jung. Berlin: Springer.Google Scholar
Goldstein, S. (2012). “Typicality and Notions of Probability in Physics.” Pp. 5971 in Ben-Menahem, Y. and Hemmo, M. (eds.), Probability in Physics. Berlin: Springer.Google Scholar
Goldstein, S., Dürr, D., and Zanghi, N. (1992). “Quantum Equilibrium and the Origin of Absolute Uncertainty.” The Journal of Statistical Physics, 67: 843907.Google Scholar
Hacking, I. (1975). The Emergence of Probability. Cambridge: Cambridge University Press.Google Scholar
Hagar, A. (2003). “A Philosopher Looks at Quantum Information Theory.” Philosophy of Science, 70: 752775.Google Scholar
Hagar, A. (2008). “Length Matters: The Einstein-Swann Correspondence.” Studies in the History and Philosophy of Modern Physics, 39: 532556.Google Scholar
Hagar, A. (2014). The Quest for the Smallest Length in Modern Physics. Cambridge: Cambridge University Press.Google Scholar
Hagar, A. and Hemmo, M. (2006). “Explaining the Unobserved. Why Quantum Theory Ain’t Only about Information.” Foundations of Physics, 36: 12951324.Google Scholar
Hagar, A. and Hemmo, M. (2013). “The Primacy of Geometry.” Studies in the History and Philosophy of Modern Physics, 44: 357364.CrossRefGoogle Scholar
Hagar, A. and Sergioli, G. (2014). “Counting Steps: A New Interpretation of Objective Chance in Statistical Physics.” Epistemologia, 37: 262275. See appendix in arXiv:1101.3521.Google Scholar
Heisenberg, W. (1930). The Physical Principles of Quantum Mechanics. New York: Dover Publications.Google Scholar
Heisenberg, W. (1983). “The Physical Content of Quantum Kinematics and Mechanics.” Pp. 6284 in Wheeler, J. and Zurek, W. (eds.), Quantum Theory and Measurement. Princeton, NJ: Princeton University Press [1927].Google Scholar
Hemmo, M. and Shenker, O. (2012). The Road to Maxwell’s Demon. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Hilgevoord, J. and Uffink, J. (1983). “Overall Width, Mean Peak Width, and the Uncertainty Principle.” Physics Letters A, 95: 474476.Google Scholar
Hilgevoord, J. and Uffink, J. (1988a). “Interference and Distinguishability in Quantum Mechanics.” Physica B, 151: 309313.Google Scholar
Hilgevoord, J. and Uffink, J. (1988b). “The Mathematical Expression of the Uncertainty Principle.” Pp. 91114 in van der Merwe, A., Selleri, F., and Tarozzi, G., (eds.), Microphysical Reality and Quantum Description. Dordrecht: Kluwer.Google Scholar
Hilgevoord, J. and Uffink, J. (1989). “Spacetime Symmetries and the Uncertainty Principle.” Nuclear Physics B (Proc. Sup.), 6: 246248.Google Scholar
Hilgevoord, J. and Uffink, J. (1990). “A New View on the Uncertainty Principle.” Pp. 121139 in Miller, A. E. (ed.), Sixty-Two Years of Uncertainty, Historical and Physical Inquiries into the Foundations of Quantum Mechanics. New York: Plenum Press.Google Scholar
Ismael, J. (2009). “Probability in Deterministic Physics.” Journal of Philosophy, 106: 89108.CrossRefGoogle Scholar
Jammer, M. (1974). The Philosophy of Quantum Mechanics. New York: John Wiley & Sons.Google Scholar
Kennard, E. H. (1927). “Zur Quantenmechanik Einfacher Bewegungstypen.” Zeitschrift für Physik, 44: 326352.Google Scholar
Kochen, S. and Specker, E. (1967). “The Problem of Hidden Variables in Quantum Mechanics.” Journal of Mathematics and Mechanics, 17: 5987.Google Scholar
Kragh, H. (1995). “The Search for a Smallest Length.” Revue d’Histoire des Sciences (Paris), 48: 401434.Google Scholar
Landau, L. and Peierls, R. (1983). “Extensions of the Uncertainty Principle to Relativistic Quantum Theory.” Pp. 465476 in Wheeler, J. and Zurek, W. (eds.), Quantum Theory and Measurement. Princeton, NJ: Princeton University Press [1931].Google Scholar
Laplace, P. S. (1902). A Philosophical Essay on Probabilities. New York: John Wiley [1814].Google Scholar
Lewis, D. (1986). Philosophical Papers Vol. 2. Oxford: Oxford University Press.Google Scholar
Loewer, B. (2001). “Determinism and Chance.” Studies in History and Philosophy of Modern Physics, 32: 609620.Google Scholar
March, A. (1951). Quantum Mechanics of Particles and Wave Fields. New York: John Wiley.Google Scholar
Maudlin, T. (2007). “What Could Be Objective about Probabilities?Studies in the History and Philosophy of Modern Physics, 38: 275291.CrossRefGoogle Scholar
Mead, C. (1964). “Possible Connection between Gravitation and Fundamental Length.” Physical Review, 135: 849862.Google Scholar
Messiah, A. (1961). Quantum Mechanics Volume II. New York: Interscience Publishers.Google Scholar
Pauli, W. (1979). In Meyenn, K. (ed.), Wissenschaftlicher Briefwechsel mit Bohr, Einstein, Heisenberg. Band I: 1919–1929. Berlin: Springer Verlag.Google Scholar
Pauli, W. (1985). In Meyenn, K. (ed.), Wissenschaftlicher Briefwechsel mit Bohr, Einstein, Heisenberg. Band II: 1930–1939. Berlin: Springer Verlag.Google Scholar
Pauli, W. (1994). Writings on Physics and Philosophy. Berlin: Springer.Google Scholar
Pitowsky, I. (1985). “On the Status of Statistical Inferences.” Synthese, 63: 233247.Google Scholar
Pitowsky, I. (1989). Quantum Probability–Quantum Logic. Berlin: Springer Verlag.Google Scholar
Pitowsky, I. (1994). “George Boole’s ‘Conditions of Possible Experience’ and the Quantum Puzzle.” British Journal for the Philosophy of Science, 45: 95125.Google Scholar
Pitowsky, I. (1996). “Laplace’s Demon Consults and Oracle: The Computational Complexity of Prediction.” Studies in the History and Philosophy of Modern Physics, 27: 161180.Google Scholar
Pitowsky, I. (2012). “Typicality and the Role of the Lebesgue Measure in Statistical Mechanics.” Pp. 4158 in Ben-Menahem, Y. and Hemmo, M. (eds.), Probability in Physics. Berlin: Springer.Google Scholar
Robertson, H. P. (1929). “The Uncertainty Principle.” Physical Review, 34: 163164.Google Scholar
Ruark, A. (1928). “The Limits of Accuracy in Physical Measurements.” Proceedings of the National Academy of Sciences, 14: 322328.Google Scholar
Schrödinger, E. (1930). “Zum Heisenbergschen Unschärfeprinzip.” Berliner Berichte, 296303.Google Scholar
Sklar, L. (1993). Physics and Chance. Cambridge: Cambridge University Press.Google Scholar
Stachel, J. (1993). “The Other Einstein.” Science in Context, 6: 275290.Google Scholar
Toffoli, T. (1984). “Cellular Automata as an Alternative to (Rather than an Approximation of) Differential Equations.” Physica D, 10: 117127.Google Scholar
Uffink, J. (1985). “Verification of the Uncertainty Principle in Neutron Interferometry.” Physics Letters A, 108: 5962.CrossRefGoogle Scholar
Uffink, J. (2011). “Subjective Probability and Statistical Physics.” Pp. 2550 in Beisbart, C. and Hartmann, S. (eds.), Probabilities in Physics. Oxford: Oxford University Press.Google Scholar
Uffink, J. and Hilgevoord, J. (1985). “Uncertainty Principle and Uncertainty Relations.” Foundations of Physics, 15: 925944.CrossRefGoogle Scholar
von Liechtenstern, C. R. (1955). “Die Beseitigung von Wlderspruchen bei der Ableitung der Unsch£rferelation.” Pp. 6770 in Proceedings of the Second International Congress of the International Union for the Philosophy of Science (Zurich 1954). Neuchatel: Editions du Griffon.Google Scholar
von Neumann, J. (1932). Mathematical Foundations of Quantum Theory. Princeton, NJ: Princeton University Press.Google Scholar
Wataghin, G. (1930). “Über die Unbestimmtheitsrelationen der Quantentheorie.” Zeitschrift für Physik, 65: 285288.Google Scholar
Wataghin, G. (1934a). “Bemerkung über die Selbstenergie der Elektronen.” Zeitschrift für Physik, 88: 9298.CrossRefGoogle Scholar
Wataghin, G. (1934b). “Über die Relativitiche Quantenelectrdynamik und die Ausstarhlung bei Stösen sher Energierecher Elektronen.” Zeitschrift für Physik, 92: 547560.Google Scholar
Wigner, E (1979). Symmetries and Reflections. Woodbridge, CT: Ox Bow Press.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×