To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The Shrikhande graph, discovered by Indian Mathematician Sharadchandra Shankar Shrikhande in 1959, exhibits several unusual properties and occupies a pivotal position within discrete mathematics. Offering a unique introduction to graph theory and discrete mathematics, this book uses the example of the Shrikhande graph as a window through which these topics can be explored. Providing historical background, including the Euler conjecture and its demise, the authors explore key concepts including: Cayley graphs; topological graph theory; spectral theory; Latin squares; root systems. A novel and valuable resource for graduate students and researchers interested in graph theory, its history, and applications, this book offers a comprehensive exploration of the Shrikhande graph and its significance.
This volume introduces the fundamental results and the state of the art in infinite duration games on graphs. These versatile game models first appeared in the study of automata and logic, but later became important for program verification and synthesis. They have many more applications. In particular, this book covers models from the fields of optimisation, reinforcement learning, model theory, and set theory. The material is presented at a level accessible to beginning graduate students, requiring only a basic understanding of discrete algorithms and graphs. The book's primary objective is constructing efficient algorithms for analysing different types of games. Rather than describe their implementation in full detail, it investigates their theoretical foundations and proves their properties and winning strategies. This tutorial reference from experts across the field is ideal for students, researchers, and professionals in logic and automata, verification and synthesis, and related fields.
Over the past few decades, graph theory has developed into one of the central areas of modern mathematics, with close (and growing) connections to areas of pure mathematics such as number theory, probability theory, algebra and geometry, as well as to applied areas such as the theory of networks, machine learning, statistical physics, and biology. It is a young and vibrant area, with several major breakthroughs having occurred in just the past few years. This book offers the reader a gentle introduction to the fundamental concepts and techniques of graph theory, covering classical topics such as matchings, colourings and connectivity, alongside the modern and vibrant areas of extremal graph theory, Ramsey theory, and random graphs. The focus throughout is on beautiful questions, ideas and proofs, and on illustrating simple but powerful techniques, such as the probabilistic method, that should be part of every young mathematician's toolkit.
Providing a cohesive reference for advanced undergraduates, graduate students and even experienced researchers, this text contains both introductory and advanced material in extremal graph theory, hypergraph theory and Ramsey theory. Along the way, the book includes many modern proof techniques in the field such as the probabilistic method and algebraic methods. Several recent breakthroughs are presented with complete proofs, for example, recent results on the sunflower problem, and off-diagonal and geometric Ramsey theory. It is perhaps unique in containing material on both hypergraph regularity and containers. Featuring an extensive list of exercises, the text is suitable as a teaching text for a variety of courses in extremal combinatorics. Each of the two parts can form the basis of separate courses, and the majority of sections are designed to match the length of a single lecture.
Understand how to make wireless communication networks, digital storage systems and computer networks robust and reliable in the first unified, comprehensive treatment of erasure correcting codes. Data loss is unavoidable in modern computer networks; as such, data recovery can be crucial and these codes can play a central role. Through a focused, detailed approach, you will gain a solid understanding of the theory and the practical knowledge to analyze, design and implement erasure codes for future computer networks and digital storage systems. Starting with essential concepts from algebra and classical coding theory, the book provides specific code descriptions and efficient design methods, with practical applications and advanced techniques stemming from cutting-edge research. This is an accessible and self-contained reference, invaluable to both theorists and practitioners in electrical engineering, computer science and mathematics.
Designed for undergraduate students of computer science, mathematics, and engineering, this book provides the tools and understanding needed to master graph theory and algorithms. It offers a strong theoretical foundation, detailed pseudocodes, and a range of real-world and illustrative examples to bridge the gap between abstract concepts and practical applications. Clear explanations and chapter-wise exercises support ease of comprehension for learners. The text begins with the basic properties of graphs and progresses to topics such as trees, connectivity, and distances in graphs. It also covers Eulerian and Hamiltonian graphs, matchings, planar graphs, and graph colouring. The book concludes with discussions on independent sets, the Ramsey theorem, directed graphs and networks. Concepts are introduced in a structured manner, with appropriate context and support from mathematical language and diagrams. Algorithms are explained through rules, reasoning, pseudocode, and relevant examples.
A valuable resource for researchers in discrete and combinatorial geometry, this book offers comprehensive coverage of several modern developments on algebraic and combinatorial properties of polytopes. The introductory chapters provide a new approach to the basic properties of convex polyhedra and how they are connected; for instance, fibre operations are treated early on. Finite tilings and polyhedral convex functions play an important role, and lead to the new technique of tiling diagrams. Special classes of polytopes such as zonotopes also have corresponding diagrams. A central result is the complete characterization of the possible face-numbers of simple polytopes. Tools used for this are representations and the weight algebra of mixed volumes. An unexpected consequence of the proof is an algebraic treatment of Brunn–Minkowski theory as applied to polytopes. Valuations also provide a thread running through the book, and the abstract theory and related tensor algebras are treated in detail.
Fix integers $r \ge 2$ and $1\le s_1\le \cdots \le s_{r-1}\le t$ and set $s=\prod _{i=1}^{r-1}s_i$. Let $K=K(s_1, \ldots , s_{r-1}, t)$ denote the complete $r$-partite $r$-uniform hypergraph with parts of size $s_1, \ldots , s_{r-1}, t$. We prove that the Zarankiewicz number $z(n, K)= n^{r-1/s-o(1)}$ provided $t\gt 3^{s+o(s)}$. Previously this was known only for $t \gt ((r-1)(s-1))!$ due to Pohoata and Zakharov. Our novel approach, which uses Behrend’s construction of sets with no 3-term arithmetic progression, also applies for small values of $s_i$, for example, it gives $z(n, K(2,2,7))=n^{11/4-o(1)}$ where the exponent 11/4 is optimal, whereas previously this was only known with 7 replaced by 721.
The famous Sidorenko’s conjecture asserts that for every bipartite graph $H$, the number of homomorphisms from $H$ to a graph $G$ with given edge density is minimised when $G$ is pseudorandom. We prove that for any graph $H$, a graph obtained from replacing edges of $H$ by generalised theta graphs consisting of even paths satisfies Sidorenko’s conjecture, provided a certain divisibility condition on the number of paths. To achieve this, we prove unconditionally that bipartite graphs obtained from replacing each edge of a complete graph with a generalised theta graph satisfy Sidorenko’s conjecture, which extends a result of Conlon, Kim, Lee and Lee [J. Lond. Math. Soc., 2018].
We show that for any integer $k\ge 1$ there exists an integer $t_0(k)$ such that, for integers $t, k_1, \ldots , k_{t+1}, n$ with $t\gt t_0(k)$, $\max \{k_1, \ldots , k_{t+1}\}\le k$, and $n \gt 2k(t+1)$, the following holds: If $F_i$ is a $k_i$-uniform hypergraph with vertex set $[n]$ and more than $ \binom{n}{k_i}-\binom{n-t}{k_i} - \binom{n-t-k}{k_i-1} + 1$ edges for all $i \in [t+1]$, then either $\{F_1,\ldots , F_{t+1}\}$ admits a rainbow matching of size $t+1$ or there exists $W\in \binom{[n]}{t}$ such that $W$ intersects $F_i$ for all $i\in [t+1]$. This may be viewed as a rainbow non-uniform extension of the classical Hilton-Milner theorem. We also show that the same holds for every $t$ and $n \gt 2k^3t$, generalizing a recent stability result of Frankl and Kupavskii on matchings to rainbow matchings.
Recent work showing the existence of conflict-free almost-perfect hypergraph matchings has found many applications. We show that, assuming certain simple degree and codegree conditions on the hypergraph $ \mathcal{H}$ and the conflicts to be avoided, a conflict-free almost-perfect matching can be extended to one covering all vertices in a particular subset of $ V(\mathcal{H})$, by using an additional set of edges; in particular, we ensure that our matching avoids all additional conflicts, which may consist of both old and new edges. This setup is useful for various applications in design theory and Ramsey theory. For example, our main result provides a crucial tool in the recent proof of the high-girth existence conjecture due to Delcourt and Postle. It also provides a black box which encapsulates many long and tedious calculations, greatly simplifying the proofs of results in generalised Ramsey theory.
In 1976, Cameron, Goethals, Seidel, and Shult classified all the graphs whose smallest eigenvalue is at least $-2$ by relating such graphs to root systems that appear in the classification of semisimple Lie algebras. In this paper, extending their beautiful theorem, we give a complete classification of all connected graphs whose smallest eigenvalue lies in $(\! -\lambda ^*, -2)$, where $\lambda ^* = ho ^{1/2} + ho ^{-1/2} \approx 2.01980$, and $ho$ is the unique real root of $x^3 = x + 1$. Our result is the first classification of infinitely many connected graphs with their smallest eigenvalue in $(\! -\lambda , -2)$ for any constant $\lambda \gt 2$.
It is well known that almost all graphs are canonizable by a simple combinatorial routine known as colour refinement, also referred to as the 1-dimensional Weisfeiler–Leman algorithm. With high probability, this method assigns a unique label to each vertex of a random input graph and, hence, it is applicable only to asymmetric graphs. The strength of combinatorial refinement techniques becomes a subtle issue if the input graphs are highly symmetric. We prove that the combination of colour refinement and vertex individualization yields a canonical labelling for almost all circulant digraphs (i.e., Cayley digraphs of a cyclic group). This result provides first evidence of good average-case performance of combinatorial refinement within the class of vertex-transitive graphs. Remarkably, we do not even need the full power of the colour refinement algorithm. We show that the canonical label of a vertex $v$ can be obtained just by counting walks of each length from $v$ to an individualized vertex. Our analysis also implies that almost all circulant graphs are compact in the sense of Tinhofer, that is, their polytops of fractional automorphisms are integral. Finally, we show that a canonical Cayley representation can be constructed for almost all circulant graphs by the more powerful 2-dimensional Weisfeiler–Leman algorithm.
A meta-conjecture of Coulson, Keevash, Perarnau, and Yepremyan [12] states that above the extremal threshold for a given spanning structure in a (hyper-)graph, one can find a rainbow version of that spanning structure in any suitably bounded colouring of the host (hyper-)graph. We solve one of the most pertinent outstanding cases of this conjecture by showing that for any $1\leq j\leq k-1$, if $G$ is a $k$-uniform hypergraph above the $j$-degree threshold for a loose Hamilton cycle, then any globally bounded colouring of $G$ contains a rainbow loose Hamilton cycle.
A finite point set in $\mathbb{R}^d$ is in general position if no $d + 1$ points lie on a common hyperplane. Let $\alpha _d(N)$ be the largest integer such that any set of $N$ points in $\mathbb{R}^d$, with no $d + 2$ members on a common hyperplane, contains a subset of size $\alpha _d(N)$ in general position. Using the method of hypergraph containers, Balogh and Solymosi showed that $\alpha _2(N) \lt N^{5/6 + o(1)}$. In this paper, we also use the container method to obtain new upper bounds for $\alpha _d(N)$ when $d \geq 3$. More precisely, we show that if $d$ is odd, then $\alpha _d(N) \lt N^{\frac {1}{2} + \frac {1}{2d} + o(1)}$, and if $d$ is even, we have $\alpha _d(N) \lt N^{\frac {1}{2} + \frac {1}{d-1} + o(1)}$. We also study the classical problem of determining $a(d,k,n)$, the maximum number of points selected from the grid $[n]^d$ such that no $k + 2$ members lie on a $k$-flat, and improve the previously best known bound for $a(d,k,n)$, due to Lefmann in 2008, by a polynomial factor when $k$ = 2 or 3 (mod 4).
The Pósa–Seymour conjecture determines the minimum degree threshold for forcing the $k$th power of a Hamilton cycle in a graph. After numerous partial results, Komlós, Sárközy, and Szemerédi proved the conjecture for sufficiently large graphs. In this paper, we focus on the analogous problem for digraphs and for oriented graphs. We asymptotically determine the minimum total degree threshold for forcing the square of a Hamilton cycle in a digraph. We also give a conjecture on the corresponding threshold for $k$th powers of a Hamilton cycle more generally. For oriented graphs, we provide a minimum semi-degree condition that forces the $k$th power of a Hamilton cycle; although this minimum semi-degree condition is not tight, it does provide the correct order of magnitude of the threshold. Turán-type problems for oriented graphs are also discussed.
For $\ell \geq 3$, an $\ell$-uniform hypergraph is disperse if the number of edges induced by any set of $\ell +1$ vertices is 0, 1, $\ell$, or $\ell +1$. We show that every disperse $\ell$-uniform hypergraph on $n$ vertices contains a clique or independent set of size $n^{\Omega _{\ell }(1)}$, answering a question of the first author and Tomon. To this end, we prove several structural properties of disperse hypergraphs.
We prove that determining the weak saturation number of a host graph $F$ with respect to a pattern graph $H$ is computationally hard, even when $H$ is the triangle. Our main tool establishes a connection between weak saturation and the shellability of simplicial complexes.
A seminal result of Komlós, Sárközy, and Szemerédi states that any $n$-vertex graph $G$ with minimum degree at least $(1/2+\alpha )n$ contains every $n$-vertex tree $T$ of bounded degree. Recently, Pham, Sah, Sawhney, and Simkin extended this result to show that such graphs $G$ in fact support an optimally spread distribution on copies of a given $T$, which implies, using the recent breakthroughs on the Kahn-Kalai conjecture, the robustness result that $T$ is a subgraph of sparse random subgraphs of $G$ as well. Pham, Sah, Sawhney, and Simkin construct their optimally spread distribution by following closely the original proof of the Komlós-Sárközy-Szemerédi theorem which uses the blow-up lemma and the Szemerédi regularity lemma. We give an alternative, regularity-free construction that instead uses the Komlós-Sárközy-Szemerédi theorem (which has a regularity-free proof due to Kathapurkar and Montgomery) as a black box. Our proof is based on the simple and general insight that, if $G$ has linear minimum degree, almost all constant-sized subgraphs of $G$ inherit the same minimum degree condition that $G$ has.
Here we consider the hypergraph Turán problem in uniformly dense hypergraphs as was suggested by Erdős and Sós. Given a $3$-graph $F$, the uniform Turán density $\pi _{\boldsymbol{\therefore }}(F)$ of $F$ is defined as the supremum over all $d\in [0,1]$ for which there is an $F$-free uniformly $d$-dense $3$-graph, where uniformly $d$-dense means that every linearly sized subhypergraph has density at least $d$. Recently, Glebov, Král’, and Volec and, independently, Reiher, Rödl, and Schacht proved that $\pi _{\boldsymbol{\therefore }}(K_4^{(3)-})=\frac {1}{4}$, solving a conjecture by Erdős and Sós. Despite substantial attention, the uniform Turán density is still only known for very few hypergraphs. In particular, the problem due to Erdős and Sós to determine $\pi _{\boldsymbol{\therefore }}(K_4^{(3)})$ remains wide open.
In this work, we determine the uniform Turán density of the $3$-graph on five vertices that is obtained from $K_4^{(3)-}$ by adding an additional vertex whose link forms a matching on the vertices of $K_4^{(3)-}$. Further, we point to two natural intermediate problems on the way to determining $\pi _{\boldsymbol{\therefore }}(K_4^{(3)})$, and solve the first of these.