To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A Gordian unlink is a finite number of unknots that are not topologically linked, each with prescribed length and thickness, and that cannot be disentangled into the trivial link by an isotopy preserving length and thickness throughout. In this note, we provide the first examples of Gordian unlinks. As a consequence, we identify the existence of isotopy classes of unknots that differ from those in classical knot theory. More generally, we present a one-parameter family of Gordian unlinks with thickness ranging in $[1,2)$ and absolute curvature bounded by 1, concluding that thinner normal tubes lead to different rope geometries than those previously considered. Knots or links in the one-parameter model introduced here are called thin knots or links. When the thickness is equal to 2, we obtain the standard model for geometric knots, also called thick knots.
In the 1950s, Morse defined the analogue of Morse functions for topological manifolds. In many instances, when mathematicians are using techniques on topological manifolds that appear to be Morse-theoretic in nature, there is a topological Morse function implicit in the argument. Topological Morse functions are known to inherit most of the familiar properties of the usual (smooth) Morse functions, with two crucial exceptions: existence and deformability. This paper gives a simple construction of continuous families of topological Morse functions.
In this paper, we provide a characterization for a class of convex curves on the 3-sphere. More precisely, using a theorem that represents a locally convex curve on the 3-sphere as a pair of curves in $\mathbb S^2$, one of which is locally convexand the other is an immersion, we are able of completely characterizing a class of convex curves on the 3-sphere.
We prove that the mapping class group is not an h-cobordism invariant of high-dimensional manifolds by exhibiting h-cobordant manifolds whose mapping class groups have different cardinalities. In order to do so, we introduce a moduli space of ‘h-block’ bundles and understand its difference with the moduli space of ordinary block bundles.
We study locally flat disks in $(\mathbb {C}P^2)^\circ :=({\mathbb {C}} P^2)\setminus \mathring {B}^4$ with boundary a fixed knot $K$ and whose complement has fundamental group $\mathbb {Z}$. We show that, up to topological isotopy relative to the (rel.) boundary, such disks necessarily arise by performing a positive crossing change on $K$ to an Alexander polynomial one knot and capping off with a $\mathbb {Z}$-disk in $D^4.$ Such a crossing change determines a loop in $S^3 \setminus K$ and we prove that the homology class of its lift to the infinite cyclic cover leads to a complete invariant of the disk. We prove that this determines a bijection between the set of rel. boundary topological isotopy classes of $\mathbb {Z}$-disks with boundary $K$ and a quotient of the set of unitary units of the ring $\mathbb {Z}[t^{\pm 1}]/(\Delta _K)$. Number-theoretic considerations allow us to deduce that a knot $K \subset S^3$ with quadratic Alexander polynomial bounds $0,1,2,4$, or infinitely many $\mathbb {Z}$-disks in $(\mathbb {C}P^2)^\circ$. This leads to the first examples of knots bounding infinitely many topologically distinct disks whose exteriors have the same fundamental group and equivariant intersection form. Finally, we give several examples where these disks are realized smoothly.
We show that the fundamental groups of smooth $4$-manifolds that admit geometric decompositions in the sense of Thurston have asymptotic dimension at most four, and equal to four when aspherical. We also show that closed $3$-manifold groups have asymptotic dimension at most three. Our proof method yields that the asymptotic dimension of closed $3$-dimensional Alexandrov spaces is at most three. Thus, we obtain that the Novikov conjecture holds for closed $4$-manifolds with such a geometric decomposition and for closed $3$-dimensional Alexandrov spaces. Consequences of these results include a vanishing result for the Yamabe invariant of certain $0$-surgered geometric $4$-manifolds and the existence of zero in the spectrum of aspherical smooth $4$-manifolds with a geometric decomposition.
We study the behaviour of Kauffman bracket skein modules of 3-manifolds under gluing along surfaces. For this we extend this notion to $3$-manifolds with marking consisting of open intervals and circles in the boundary. The new module is called the stated skein module.
The first results concern non-injectivity of certain natural maps defined when forming connected sums along spheres or disks. These maps are injective for surfaces or for generic quantum parameter, but we show that in general they are not when the quantum parameter is a root of 1. We show that when the quantum parameter is a root of 1, the empty skein is zero in a connected sum where each constituent manifold has non-empty marking. We also prove various non-injectivity results for the Chebyshev-Frobenius map and the map induced by deleting marked balls.
We then interpret stated skein modules as a monoidal symmetric functor from a category of “decorated cobordisms” to a category of algebras and their bimodules. We apply this to deduce properties of stated skein modules as a Van-Kampen like theorem, a computation through Heegaard decompositions and a relation to Hochshild homology for trivial circle bundles over surfaces.
We prove that the existence of one horosphere in the universal cover of a closed Riemannian manifold of dimension $n \geq 3$ with strongly $1/4$-pinched or relatively $1/2$-pinched sectional curvature, on which the stable holonomy along one horosphere coincides with the Riemannian parallel transport, implies that the manifold is homothetic to a real hyperbolic manifold.
We show that for an oriented 4-dimensional Poincaré complex X with finite fundamental group, whose 2-Sylow subgroup is abelian with at most 2 generators, the homotopy type of X is determined by its quadratic 2-type.
We show that for $n \neq 1,4$, the simplicial volume of an inward tame triangulable open $n$-manifold $M$ with amenable fundamental group at infinity at each end is finite; moreover, we show that if also $\pi _1(M)$ is amenable, then the simplicial volume of $M$ vanishes. We show that the same result holds for finitely-many-ended triangulable manifolds which are simply connected at infinity.
For an odd prime $p$, we consider free actions of $(\mathbb {Z}_{/{p}})^2$ on $S^{2n-1}\times S^{2n-1}$ given by linear actions of $(\mathbb {Z}_{/{p}})^2$ on $\mathbb {R}^{4n}$. Simple examples include a lens space cross a lens space, but $k$-invariant calculations show that other quotients exist. Using the tools of Postnikov towers and surgery theory, the quotients are classified up to homotopy by the $k$-invariants and up to homeomorphism by the Pontrjagin classes. We will present these results and demonstrate how to calculate the $k$-invariants and the Pontrjagin classes from the rotation numbers.
This paper describes how to compute algorithmically certain twisted signature invariants of a knot $K$ using twisted Blanchfield forms. An illustration of the algorithm is implemented on $(2,q)$-torus knots. Additionally, using satellite formulas for these invariants, we also show how to obstruct the sliceness of certain iterated torus knots.
Given a Hamiltonian action of a proper symplectic groupoid (for instance, a Hamiltonian action of a compact Lie group), we show that the transverse momentum map admits a natural constant rank stratification. To this end, we construct a refinement of the canonical stratification associated to the Lie groupoid action (the orbit type stratification, in the case of a Hamiltonian Lie group action) that seems not to have appeared before, even in the literature on Hamiltonian Lie group actions. This refinement turns out to be compatible with the Poisson geometry of the Hamiltonian action: it is a Poisson stratification of the orbit space, each stratum of which is a regular Poisson manifold that admits a natural proper symplectic groupoid integrating it. The main tools in our proofs (which we believe could be of independent interest) are a version of the Marle–Guillemin–Sternberg normal form theorem for Hamiltonian actions of proper symplectic groupoids and a notion of equivalence between Hamiltonian actions of symplectic groupoids, closely related to Morita equivalence between symplectic groupoids.
Given a graph G without loops, the pseudograph associahedron PG is a smooth polytope, so there is a projective smooth toric variety XG corresponding to PG. Taking the real locus of XG, we have the projective smooth real toric variety $X^{\mathbb{R}}_G$. The integral cohomology groups of $X^{\mathbb{R}}_G$ can be computed by studying the topology of certain posets of even subgraphs of G; such a poset is neither pure nor shellable in general. We completely characterize the graphs whose posets of even subgraphs are always shellable. It follows that we get a family of projective smooth real toric varieties whose integral cohomology groups are torsion-free or have only 2-torsion.
Let $\alpha < \omega _1$ be a prime component, and let $X$ and $Y$ be metric spaces. In [8], it was shown that if $C_p(X)$ and $C_p(Y)$ are linearly homeomorphic, then the scattered heights $\kappa (X)$ and $\kappa (Y)$ of $X$ and $Y$ satisfy $\kappa (X) \leq \alpha $ if and only if $\kappa (Y) \leq \alpha $. We will prove that this also holds if $C_p^*(X)$ and $C_p^*(Y)$ are linearly homeomorphic and that these results do not hold for arbitrary Tychonov spaces. We will also prove that if $C_p^*(X)$ and $C_p^*(Y)$ are linearly homeomorphic, then $\kappa (X) < \alpha $ if and only if $\kappa (Y) < \alpha $, which was shown in [9] for $\alpha = \omega $. This last statement is not always true for linearly homeomorphic $C_p(X)$ and $C_p(Y)$. We will show that if $\alpha = \omega ^{\mu }$ where $\mu < \omega _1$ is a successor ordinal, it is true, but for all other prime components, this is not the case. Finally, we will prove that if $C_p^*(X)$ and $C_p^*(Y)$ are linearly homeomorphic, then $X$ is scattered if and only if $Y$ is scattered. This result does not directly follow from the above results. We will clarify why the results for linearly homeomorphic spaces $C_p^*(X)$ and $C_p^*(Y)$ do require a different and more complex approach than the one that was used for linearly homeomorphic spaces $C_p(X)$ and $C_p(Y)$.
We provide a simple condition on rational cohomology for the total space of a pullback fibration over a connected sum to have the rational homotopy type of a connected sum after looping. This takes inspiration from a recent work of Jeffrey and Selick, in which they study pullback fibrations of this type but under stronger hypotheses compared to our result.
The trace of the $n$-framed surgery on a knot in $S^{3}$ is a 4-manifold homotopy equivalent to the 2-sphere. We characterise when a generator of the second homotopy group of such a manifold can be realised by a locally flat embedded $2$-sphere whose complement has abelian fundamental group. Our characterisation is in terms of classical and computable $3$-dimensional knot invariants. For each $n$, this provides conditions that imply a knot is topologically $n$-shake slice, directly analogous to the result of Freedman and Quinn that a knot with trivial Alexander polynomial is topologically slice.
We address primary decomposition conjectures for knot concordance groups, which predict direct sum decompositions into primary parts. We show that the smooth concordance group of topologically slice knots has a large subgroup for which the conjectures are true and there are infinitely many primary parts, each of which has infinite rank. This supports the conjectures for topologically slice knots. We also prove analogues for the associated graded groups of the bipolar filtration of topologically slice knots. Among ingredients of the proof, we use amenable $L^2$-signatures, Ozsváth-Szabó d-invariants and Némethi’s result on Heegaard Floer homology of Seifert 3-manifolds. In an appendix, we present a general formulation of the notion of primary decomposition.