We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
While constructing mathematical models, scientists usually consider biotic factors, but it is crystal-clear that abiotic factors, such as wind, are also important as biotic factors. From this point of view, this paper is devoted to the investigation of some bifurcation properties of a fractional-order prey–predator model under the effect of wind. Using fractional calculus is very popular in modelling, since it is more effective than classical calculus in predicting the system’s future state and also discretization is one of the most powerful tools to study the behaviour of the models. In this paper, first of all, the model is discretized by using a piecewise discretization approach. Then, the local stability of fixed points is considered. We show using the centre manifold theorem and bifurcation theory that the system experiences a flip bifurcation and a Neimark–Sacker bifurcation at a positive fixed point. Finally, numerical simulations are given to demonstrate our results.
In this paper, we establish suitable characterisations for a pair of functions $(W(x),H(x))$ on a bounded, connected domain $\Omega \subset \mathbb{R}^n$ in order to have the following Hardy inequality:
where d(x) is a suitable quasi-norm (gauge), $|\xi|^2_A = \langle A(x)\xi, \xi \rangle$ for $\xi \in \mathbb{R}^n$ and A(x) is an n × n symmetric, uniformly positive definite matrix defined on a bounded domain $\Omega \subset \mathbb{R}^n$. We also give its Lp analogue. As a consequence, we present examples for a standard Laplacian on $\mathbb{R}^n$, Baouendi–Grushin operator, and sub-Laplacians on the Heisenberg group, the Engel group and the Cartan group. Those kind of characterisations for a pair of functions $(W(x),H(x))$ are obtained also for the Rellich inequality. These results answer the open problems of Ghoussoub-Moradifam [16].
We study an optimal inventory control problem under a reflected jump–diffusion netflow process with state-dependent jumps, in which the intensity of the jump process can depend on the inventory level. We examine the well-posedness of the associated integro-differential Hamilton–Jacobi–Bellman (ID-HJB) equation with Neumann boundary condition in the classical sense. To achieve this, we first establish the existence of viscosity solutions to the ID-HJB equation of an auxiliary control problem with a compact policy space, which is proved to be equivalent to the primal problem. We reformulate the ID-HJB equation as a Neumann HJB equation with the (non-local) integral term expressed in terms of the value function of the auxiliary problem and prove the existence of a unique classical solution to the Neumann HJB equation. Then, the well-posedness of the primal ID-HJB equation follows from the unique classical solution of the Neumann HJB equation and the existence of viscosity solutions to the auxiliary ID-HJB equation. Based on this classical solution, we characterize the optimal (admissible) inventory control strategy and show the verification result for the primal control problem.
We obtain a system of identities relating boundary coefficients and spectral data for the one-dimensional Schrödinger equation with boundary conditions containing rational Herglotz–Nevanlinna functions of the eigenvalue parameter. These identities can be thought of as a kind of mini version of the Gelfand–Levitan integral equation for boundary coefficients only.
We consider uniqueness problems for meromorphic inner functions on the upper half-plane. In these problems, we consider spectral data depending partially or fully on the spectrum, derivative values at the spectrum, Clark measure, or the spectrum of the negative of a meromorphic inner function. Moreover, we consider applications of these uniqueness results to inverse spectral theory of canonical Hamiltonian systems and obtain generalizations of the Borg-Levinson two-spectra theorem for canonical Hamiltonian systems and unique determination of a Hamiltonian from its spectral measure under some conditions.
In this paper, we present a sufficient framework to exhibit the sample path-wise asymptotic flocking dynamics of the Cucker–Smale model with unit-speed constraint and the randomly switching network topology. We employ a matrix formulation of the given equation, which allows us to evaluate the diameter of velocities with respect to the adjacency matrix of the network. Unlike the previous result on the randomly switching Cucker–Smale model, the unit-speed constraint disallows the system to be considered as a nonautonomous linear ordinary differential equation on velocity vector, which forces us to get a weaker form of the flocking estimate than the result for the original Cucker–Smale model.
Mathematical modelling of microwaves travelling through bauxite ore provides a way to compute moisture content in the free space transmission method given data on signal attenuation, phase shift and variable bauxite depth. We extend a recently developed four-layer model that uses coupled ordinary differential wave equations for the electric field together with continuity boundary conditions at interfaces between ore, air and antenna to find a solution that incorporates multiple internal reflections in ore and air. The model provides good fits to data, depending on ore permittivity and conductivity.
Our extensions are to use effective medium models to obtain electromagnetic properties of the ore mixture from moisture content and to incorporate the damping effects of scattering from the ore surface. Our model leads to a formula for the received signal showing how signal strengths SS and phase shifts depend on the moisture content of the bauxite ore, through the effects of moisture on permittivity and conductivity. We show that SS may be noninvertible, indicating that attenuation data alone cannot be used to infer moisture content. Combining with phase data typically corrects the noninvertibility. Reducing the operating frequency dramatically improves the usefulness of signal strength data for inferring moisture content.
In this work, we study the existence of solutions of nonlinear fractional coupled system of $\varphi $-Hilfer type in the frame of Banach spaces. We improve a property of a measure of noncompactness in a suitably selected Banach space. Darbo’s fixed point theorem is applied to obtain a new existence result. Finally, the validity of our result is illustrated through an example.
Many reaction networks arising in applications are multistationary, that is, they have the capacity for more than one steady state, while some networks exhibit absolute concentration robustness (ACR), which means that some species concentration is the same at all steady states. Both multistationarity and ACR are significant in biological settings, but only recently has attention focused on the possibility for these properties to coexist. Our main result states that such coexistence in at-most-bimolecular networks (which encompass most networks arising in biology) requires at least three species, five complexes and three reactions. We prove additional bounds on the number of reactions for general networks based on the number of linear conservation laws. Finally, we prove that, outside of a few exceptional cases, ACR is equivalent to non-multistationarity for bimolecular networks that are small (more precisely, one-dimensional or up to two species). Our proofs involve analyses of systems of sparse polynomials, and we also use classical results from chemical reaction network theory.
We consider the discrete Safronov-Dubovskiĭ aggregation equation associated with the physical condition, where particle injection and extraction take place in the dynamical system. In application, this model is used to describe the aggregation of particle-monomers in combination with sedimentation of particle-clusters. More precisely, we prove well-posedness of the considered model for a large class of aggregation kernel with source and efflux coefficients. Furthermore, over a long time period, we prove that the dynamical model attains a unique equilibrium solution with an exponential rate under a suitable condition on the forcing coefficient.
We establish asymptotic formulas for all the eigenvalues of the linearization problem of the Neumann problem for the scalar field equation in a finite interval
In the previous paper of the third author [T. Wakasa and S. Yotsutani, J. Differ. Equ. 258 (2015), 3960–4006] asymptotic formulas for the Allen–Cahn case $\varepsilon ^2u_{xx}+u-u^3=0$ were established. In this paper, we apply the method developed in the previous paper to our case. We show that all the eigenvalues can be classified into three categories, i.e., near $-3$ eigenvalues, near $0$ eigenvalues and the other eigenvalues. We see that the number of the near $-3$ eigenvalues (resp. the near $0$ eigenvalues) is equal to the number of the interior and boundary peaks (resp. the interior peaks) of a solution for the nonlinear problem. The main technical tools are various asymptotic formulas for complete elliptic integrals.
The present paper deals with the kinetic-theoretic description of the evolution of systems consisting of many particles interacting not only with each other but also with the external world, so that the equation governing their evolution contains an additional term representing such interaction, called the ‘forcing term’. Firstly, the interactions between pairs of particles are both conservative and nonconservative; the latter represents, among others, birth/death rates. The ‘forcing term’ does not express a ‘classical’ force exerted by the external world on the particles, but a more general influence on the effects of mutual interactions of particles, for instance, climate changes, that increase or decrease the different agricultural productions at different times, thus altering the economic relationships between different subsystems, that in turn can be also perturbed by stock market fluctuations, sudden wars, periodic epidemics, and so on. Thus, the interest towards these problems moves the mathematical analysis of the effects of different kinds of forcing terms on solutions to equations governing the collective (that is statistical) behaviour of such nonconservative many-particle systems. In the present paper, we offer a study of the basic mathematical properties of such solutions, along with some numerical simulations to show the effects of forcing terms for a classical prey–predator model in ecology.
In this paper, we study existence of rotating periodic solutions for p-Laplacian differential systems. We first build a new continuation theorem by topological degree, and then obtain the existence of rotating periodic solutions for two kinds of p-Laplacian differential systems via this continuation theorem, extend some existing relevant results.
The dynamics of interfaces in slow diffusion equations with strong absorption are studied. Asymptotic methods are used to give descriptions of the behaviour local to a comprehensive range of possible singular events that can occur in any evolution. These events are: when an interface changes its direction of propagation (reversing and anti-reversing), when an interface detaches from an absorbing obstacle (detaching), when two interfaces are formed by film rupture (touchdown) and when the solution undergoes extinction. Our account of extinction and self-similar reversing and anti-reversing is built upon previous work; results on non-self-similar reversing and anti-reversing and on the various types of detachment and touchdown are developed from scratch. In all cases, verification of the asymptotic results against numerical solutions to the full PDE is provided. Self-similar solutions, both of the full equation and of its asymptotic limits, play a central role in the analysis.
This paper is focused on spreading dynamics for a discrete Nicholson's blowflies model with time convolution kernel. This problem arises in the invasive activity of blowflies scattered in discrete spatial environment and has distributed maturated age. We found that for a general convolution kernel, the model can exhibit travelling wave phenomena in a discrete spatial habitat. In particular, we determine the minimal wave speed of travelling waves by deriving the non-existence of travelling waves, and we demonstrate that the minimal wave speed can determine the long time behaviour of solutions with compact initial function. Moreover, we prove that all travelling waves are strictly increasing, which implies that the waveforms remain monotone in the propagation process. Some numerical simulations are also presented to confirm the analytical results.
The time-global unique classical positive solutions to the reaction–diffusion equations for prey–predator models with dormancy of predators are constructed. The feature appears on the nonlinear terms of Holling type $\rm I\!I$ functional response. The crucial step is to establish time-local positive classical solutions by using a new approximation associated with time-evolution operators. Although the system does not equip usual comparison principle for solutions to partial differential equation, a priori bounds are derived by enclosing and renormalising arguments of solutions to the corresponding ordinary differential equations. Furthermore, time-global existence, invariant regions and asymptotic behaviours of solutions follow from such a priori bounds.
We establish a priori bounds, existence and qualitative behaviour of positive radial solutions in annuli for a class of nonlinear systems driven by Pucci extremal operators and Lane-Emden coupling in the superlinear regime. Our approach is purely nonvariational. It is based on the shooting method, energy functionals, spectral properties, and on a suitable criteria for locating critical points in annular domains through the moving planes method that we also prove.
In this paper, we are interested in investigating notions of stability for generalized linear differential equations (GLDEs). Initially, we propose and revisit several definitions of stability and provide a complete characterization of them in terms of upper bounds and asymptotic behaviour of the transition matrix. In addition, we illustrate our stability results for GLDEs to linear periodic systems and linear impulsive differential equations. Finally, we prove that the well-known definitions of uniform asymptotic stability and variational asymptotic stability are equivalent to the global uniform exponential stability introduced in this article.
We work with polynomial three-dimensional rigid differential systems. Using the Lyapunov constants, we obtain lower bounds for the cyclicity of the known rigid centres on their centre manifolds. Moreover, we obtain an example of a quadratic rigid centre from which is possible to bifurcate 13 limit cycles, which is a new lower bound for three-dimensional quadratic systems.