We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper we prove a new generic vanishing theorem for $X$ a complete homogeneous variety with respect to an action of a connected algebraic group. Let $A, B_0\subset X$ be locally closed affine subvarieties, and assume that $B_0$ is smooth and pure dimensional. Let ${\mathcal {P}}$ be a perverse sheaf on $A$ and let $B=g B_0$ be a generic translate of $B_0$. Then our theorem implies $(-1)^{\operatorname {codim} B}\chi (A\cap B, {\mathcal {P}}|_{A\cap B})\geq 0$. As an application, we prove in full generality a positivity conjecture about the signed Euler characteristic of generic triple intersections of Schubert cells. Such Euler characteristics are known to be the structure constants for the multiplication of the Segre–Schwartz–MacPherson classes of these Schubert cells.
In this paper, we introduce new classes of gluing of complex analytic space germs, called weakly large, large, and strongly large. We describe their Poincaré series and, as applications, we give numerical criteria to determine when these classes of gluing of germs of complex analytic spaces are smooth, singular, complete intersections and Gorenstein, in terms of their Betti numbers. In particular, we show that the gluing of the same germ of complex analytic space along any subspace is always a singular germ.
For a reduced hyperplane arrangement, we prove the analytic Twisted Logarithmic Comparison Theorem, subject to mild combinatorial arithmetic conditions on the weights defining the twist. This gives a quasi-isomorphism between the twisted logarithmic de Rham complex and the twisted meromorphic de Rham complex. The latter computes the cohomology of the arrangement’s complement with coefficients from the corresponding rank one local system. We also prove the algebraic variant (when the arrangement is central), and the analytic and algebraic (untwisted) Logarithmic Comparison Theorems. The last item positively resolves an old conjecture of Terao. We also prove that: Every nontrivial rank one local system on the complement can be computed via these Twisted Logarithmic Comparison Theorems; these computations are explicit finite-dimensional linear algebra. Finally, we give some $\mathscr {D}_{X}$-module applications: For example, we give a sharp restriction on the codimension one components of the multivariate Bernstein–Sato ideal attached to an arbitrary factorization of an arrangement. The bound corresponds to (and, in the univariate case, gives an independent proof of) M. Saito’s result that the roots of the Bernstein–Sato polynomial of a non-smooth, central, reduced arrangement live in $(-2 + 1/d, 0).$
The embedded Nash problem for a hypersurface in a smooth algebraic variety is to characterize geometrically the maximal irreducible families of arcs with fixed order of contact along the hypersurface. We show that divisors on minimal models of the pair contribute with such families. We solve the problem for unibranch plane curve germs, in terms of the resolution graph. These are embedded analogs of known results for the classical Nash problem on singular varieties.
Kähler–Einstein currents, also known as singular Kähler–Einstein metrics, have been introduced and constructed a little over a decade ago. These currents live on mildly singular compact Kähler spaces X and their two defining properties are the following: They are genuine Kähler–Einstein metrics on $X_{\mathrm {reg}}$, and they admit local bounded potentials near the singularities of X. In this note, we show that these currents dominate a Kähler form near the singular locus, when either X admits a global smoothing, or when X has isolated smoothable singularities. Our results apply to klt pairs and allow us to show that if X is any compact Kähler space of dimension three with log terminal singularities, then any singular Kähler–Einstein metric of nonpositive curvature dominates a Kähler form.
The goal of this paper is to describe certain nonlinear topological obstructions for the existence of first-order smoothings of mildly singular Calabi–Yau varieties of dimension at least $4$. For nodal Calabi–Yau threefolds, a necessary and sufficient linear topological condition for the existence of a first-order smoothing was first given in [Fri86]. Subsequently, Rollenske–Thomas [RT09] generalized this picture to nodal Calabi–Yau varieties of odd dimension by finding a necessary nonlinear topological condition for the existence of a first-order smoothing. In a complementary direction, in [FL22a], the linear necessary and sufficient conditions of [Fri86] were extended to Calabi–Yau varieties in every dimension with $1$-liminal singularities (which are exactly the ordinary double points in dimension $3$ but not in higher dimensions). In this paper, we give a common formulation of all of these previous results by establishing analogues of the nonlinear topological conditions of [RT09] for Calabi–Yau varieties with weighted homogeneous k-liminal hypersurface singularities, a broad class of singularities that includes ordinary double points in odd dimensions.
In this paper, we present a solution to the problem of the analytic classification of germs of plane curves with several irreducible components. Our algebraic approach follows precursive ideas of Oscar Zariski and as a subproduct allows us to recover some particular cases found in the literature.
Let $f_0$ and $f_1$ be two homogeneous polynomials of degree d in three complex variables $z_1,z_2,z_3$. We show that the Lê–Yomdin surface singularities defined by $g_0:=f_0+z_i^{d+m}$ and $g_1:=f_1+z_i^{d+m}$ have the same abstract topology, the same monodromy zeta-function, the same $\mu ^*$-invariant, but lie in distinct path-connected components of the $\mu ^*$-constant stratum if their projective tangent cones (defined by $f_0$ and $f_1$, respectively) make a Zariski pair of curves in $\mathbb {P}^2$, the singularities of which are Newton non-degenerate. In this case, we say that $V(g_0):=g_0^{-1}(0)$ and $V(g_1):=g_1^{-1}(0)$ make a $\mu ^*$-Zariski pair of surface singularities. Being such a pair is a necessary condition for the germs $V(g_0)$ and $V(g_1)$ to have distinct embedded topologies.
We investigate the geometry of codimension one foliations on smooth projective varieties defined over fields of positive characteristic with an eye toward applications to the structure of codimension one holomorphic foliations on projective manifolds.
Constructible sheaves of abelian groups on a stratified space can be equivalently described in terms of representations of the exit-path category. In this work, we provide a similar presentation of the abelian category of perverse sheaves on a stratified surface in terms of representations of the so-called paracyclic category of the surface. The category models a hybrid exit–entrance behaviour with respect to chosen sectors of direction, placing it ‘in between’ exit and entrance path categories. In particular, this perspective yields an intrinsic definition of perverse sheaves as an abelian category without reference to derived categories and t-structures.
We develop a Thom–Mather theory of frontals analogous to Ishikawa's theory of deformations of Legendrian singularities but at the frontal level, avoiding the use of the contact setting. In particular, we define concepts like frontal stability, versality of frontal unfoldings or frontal codimension. We prove several characterizations of stability, including a frontal Mather–Gaffney criterion, and of versality. We then define the method of reduction with which we show how to construct frontal versal unfoldings of plane curves and show how to construct stable unfoldings of corank 1 frontals with isolated instability which are not necessarily versal. We prove a frontal version of Mond's conjecture in dimension 1. Finally, we classify stable frontal multigerms and give a complete classification of corank 1 stable frontals from $\mathbb {C}^3$ to $\mathbb {C}^4$.
Let f be an isolated singularity at the origin of $\mathbb {C}^n$. One of many invariants that can be associated with f is its Łojasiewicz exponent $\mathcal {L}_0 (f)$, which measures, to some extent, the topology of f. We give, for generic surface singularities f, an effective formula for $\mathcal {L}_0 (f)$ in terms of the Newton polyhedron of f. This is a realization of one of Arnold’s postulates.
We study the Hodge and weight filtrations on the localization along a hypersurface, using methods from birational geometry and the V-filtration induced by a local defining equation. These filtrations give rise to ideal sheaves called weighted Hodge ideals, which include the adjoint ideal and a multiplier ideal. We analyze their local and global properties, from which we deduce applications related to singularities of hypersurfaces of smooth varieties.
We develop the theory of relative regular holonomic $\mathcal {D}$-modules with a smooth complex manifold $S$ of arbitrary dimension as parameter space, together with their main functorial properties. In particular, we establish in this general setting the relative Riemann–Hilbert correspondence proved in a previous work in the one-dimensional case.
We define Bernstein–Sato polynomials for meromorphic functions and study their basic properties. In particular, we prove a Kashiwara–Malgrange-type theorem on their geometric monodromies, which would also be useful in relation with the monodromy conjecture. A new feature in the meromorphic setting is that we have several b-functions whose roots yield the same set of the eigenvalues of the Milnor monodromies. We also introduce multiplier ideal sheaves for meromorphic functions and show that their jumping numbers are related to our b-functions.
We formalize the concepts of holomorphic affine and projective structures along the leaves of holomorphic foliations by curves on complex manifolds. We show that many foliations admit such structures, we provide local normal forms for them at singular points of the foliation, and we prove some index formulae in the case where the ambient manifold is compact. As a consequence of these, we establish that a regular foliation of general type on a compact algebraic manifold of even dimension does not admit a foliated projective structure. Finally, we classify foliated affine and projective structures along regular foliations on compact complex surfaces.
For each central essential hyperplane arrangement
$\mathcal{A}$
over an algebraically closed field, let
$Z_\mathcal{A}^{\hat\mu}(T)$
denote the Denef–Loeser motivic zeta function of
$\mathcal{A}$
. We prove a formula expressing
$Z_\mathcal{A}^{\hat\mu}(T)$
in terms of the Milnor fibers of related hyperplane arrangements. This formula shows that, in a precise sense, the degree to which
$Z_{\mathcal{A}}^{\hat\mu}(T)$
fails to be a combinatorial invariant is completely controlled by these Milnor fibers. As one application, we use this formula to show that the map taking each complex arrangement
$\mathcal{A}$
to the Hodge–Deligne specialization of
$Z_{\mathcal{A}}^{\hat\mu}(T)$
is locally constant on the realization space of any loop-free matroid. We also prove a combinatorial formula expressing the motivic Igusa zeta function of
$\mathcal{A}$
in terms of the characteristic polynomials of related arrangements.
It is well known that the diffeomorphism type of the Milnor fibration of a (Newton) nondegenerate polynomial function f is uniquely determined by the Newton boundary of f. In the present paper, we generalize this result to certain degenerate functions, namely we show that the diffeomorphism type of the Milnor fibration of a (possibly degenerate) polynomial function of the form
$f=f^1\cdots f^{k_0}$
is uniquely determined by the Newton boundaries of
$f^1,\ldots , f^{k_0}$
if
$\{f^{k_1}=\cdots =f^{k_m}=0\}$
is a nondegenerate complete intersection variety for any
$k_1,\ldots ,k_m\in \{1,\ldots , k_0\}$
.
We study non-abelian versions of the Mellin transformations, originally introduced by Gabber-Loeser on complex affine tori. Our main result is a generalisation to the non-abelian context and with arbitrary coefficients of the t-exactness of Gabber-Loeser’s Mellin transformation. As an intermediate step, we obtain vanishing results for the Sabbah specialisation functors. Our main application is to construct new examples of duality spaces in the sense of Bieri-Eckmann, generalising results of Denham-Suciu.