Published online by Cambridge University Press: 01 July 2016
Consider a pair of single server queues arranged in series. (This is the simplest example of a queuing network.) In an earlier paper [2], a limit theorem was proved to justify a heavy traffic approximation for the (two-dimensional) equilibrium waiting-time distribution. Specifically the waiting-time distribution was shown to be approximated by the limit distribution F of a certain vector stochastic process Z. The process Z was defined as an explicit, but relatively complicated, transformation of vector Brownian motion, and the general problem of determining F was left unsolved.
It is shown in this paper that Z is a diffusion process (continuous strong Markov process) whose state space S is the non-negative quadrant. On the interior of S, the process behaves as an ordinary vector Brownian motion, and it reflects instantaneously at each boundary surface (axis). At one axis, the reflection is normal, but at the other axis it has a tangential component as well. The generator of Z is calculated.
It is shown that the limit distribution F is the solution of a first-passage problem for a certain dual diffusion process Z∗. The generator of Z∗ is calculated, and the analytical theory of Markov processes is used to derive a partial differential equation (with boundary conditions) for the density f of F. Necessary and sufficient conditions are found for f to be separable (for the limit distribution to have independent components). This extends slightly the class of explicit solutions found previously in [2]. Another special case is solved explicitly, showing that the density is not in general separable.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.