We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
This journal utilises an Online Peer Review Service (OPRS) for submissions. By clicking "Continue" you will be taken to our partner site
http://www.editorialmanager.com/aeroj/default.aspx.
Please be aware that your Cambridge account is not valid for this OPRS and registration is required. We strongly advise you to read all "Author instructions" in the "Journal information" area prior to submitting.
To save this undefined to your undefined account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your undefined account.
Find out more about saving content to .
To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
An electric propulsion model for propeller-driven aircraft is developed with the aim of minimising the power consumption for a given airspeed and thrust. Blade Element Momentum Theory (BEMT) is employed for propeller performance predictions fed with aerodynamic aerofoil data obtained from a proposed combined Computational Fluid Dynamics (CFD)–Montgomerie method, which is also validated. The Two-Dimensional (2D) aerofoil data are corrected to consider compressibility, three-dimensional, viscous and Reynolds-number effects. The BEMT model showed adequate fitting with experimental data from the University of Illinois Urbana Champaign (UIUC) database. Additionally, Goldstein optimisation via vortex theory is employed to design pitch and chord distributions minimising the induced losses of the propeller. Particle swarm optimisation is employed to find the optimal value for a wide range of geometrical and operational parameters considering some constraints. The optimisation algorithm is validated through a study case where an existing optimisation problem is approached, leading to very similar results. Some trends and insights are obtained from the study case and discussed regarding the design of an optimal propulsion system. Finally, CFD simulations of the study case are carried out, showing a slight relative error of BEMT.
Landing gear are exposed to cyclic loads from the ground manoeuvres that aircraft perform in-service. Variability is observed in the loading magnitude associated with ground manoeuvres, along with the per-flight variability in ground manoeuvre occurrence and sequencing. Whilst loading magnitude variability has been widely characterised, significant assumptions are required regarding manoeuvre occurrence and sequencing when constructing landing gear load spectra for fatigue design. These assumptions are required due to the limited availability of data concerning ground manoeuvre occurrence and sequencing relating to aircraft in-service and require validation to facilitate the design of more efficient components. ‘Big-Data’ approaches, employing Automatic Dependent Surveillance-Broadcast (ADS-B) transponder data, enable aircraft ground tracks to be identified. This paper presents a methodology to characterise the variability in ground manoeuvre occurrence and sequencing using ADS-B data sourced from Flightradar24® for a wide-body aircraft fleet. Using statistics generated for the fleet, it was identified that significant variability exists in the occurrence and sequencing of turning and braking manoeuvres. The statistics also validate existing assumptions, including that the proportional share of left and right turning manoeuvres is equal. Finally, this paper discusses the utility of ADS-B datasets for constructing landing gear load spectra and monitoring of landing gear in-service.
An unusual philosophical approach is proposed here to decarbonise larger civil aircraft that fly long ranges and consume a large fraction of civil aviation fuel. These inject an important amount of carbon emissions into the atmosphere, and holistic decarbonising solutions must consider this sector. A philosophical–analytical investigation is reported here on the feasibility of an airliner family to fly over long ranges and assist in the elimination of carbon dioxide emissions from civil aviation.
Backed by state-of-the-art correlations and engine performance integration analytical tools, a family of large airliners is proposed based on the development and integration of the body of a very large two-deck four-engine airliner with the engines, wings and flight control surfaces of a very long-range twin widebody jet. The proposal is for a derivative design and not a retrofit. This derivative design may enable a swifter entry to service.
The main contribution of this study is a philosophical one: a carefully evaluated aircraft family that appears to have very good potential for first-generation hydrogen-fuelled airliners using gas turbine engines for propulsion. This family offers three variants: a 380-passenger aircraft with a range of 3,300nm, a 330-passenger aircraft with a range of 4,800nm and a 230-passenger aircraft with a range of 5,500nm. The latter range is crucially important because it permits travel from anywhere in the globe to anywhere else with only one stop. The jet engine of choice is a 450kN high-bypass turbofan.
Real-time flight data from the Automatic Dependent Surveillance–Broadcast (ADS-B) has been integrated, through a data interface, with a flight performance computer program to predict aviation emissions at altitude. The ADS-B, along with data from Mode-S, are then used to ‘fly’ selected long-range aircraft models (Airbus A380-841, A330-343 and A350-900) and one turboprop (ATR72). Over 2,500 flight trajectories have been processed to demonstrate the integration between databases and software systems. Emissions are calculated for altitudes greater than 3,000 feet (609m) and exclude landing and take-off cycles. This proof of concept fills a gap in the aviation emissions inventories, since it uses real-time flights and produces estimates at a very granular level. It can be used to analyse emissions of gases such as carbon dioxide ($\mathrm{CO}_2$), carbon monoxide (CO), nitrogen oxides ($\mathrm{NO}_x$) and water vapour on a specific route (city pair), for a specific aircraft, for an entire fleet, or on a seasonal basis. It is shown how $\mathrm{NO}_x$ and water vapour emissions concentrate around tropospheric altitudes only for long-range flights, and that the cruise range is the biggest discriminator in the absolute value of these and other exhaust emissions.