Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-26T10:37:37.419Z Has data issue: false hasContentIssue false

How foraging works: Uncertainty magnifies food-seeking motivation

Published online by Cambridge University Press:  08 March 2018

Patrick Anselme
Affiliation:
Faculty of Psychology, Department of Biopsychology, University of Bochum, D-44801 Bochum, Germany. Patrick.Anselme@rub.de, www.bio.psy.rub.de
Onur Güntürkün
Affiliation:
Faculty of Psychology, Department of Biopsychology, University of Bochum, D-44801 Bochum, Germany. onur.guentuerkuen@ruhr-uni-bochum.de, www.bio.psy.rub.de

Abstract

Food uncertainty has the effect of invigorating food-related responses. Psychologists have noted that mammals and birds respond more to a conditioned stimulus that unreliably predicts food delivery, and ecologists have shown that animals (especially small passerines) consume and/or hoard more food and can get fatter when access to that resource is unpredictable. Are these phenomena related? We think they are. Psychologists have proposed several mechanistic interpretations, while ecologists have suggested a functional interpretation: The effect of unpredictability on fat reserves and hoarding behavior is an evolutionary strategy acting against the risk of starvation when food is in short supply. Both perspectives are complementary, and we argue that the psychology of incentive motivational processes can shed some light on the causal mechanisms leading animals to seek and consume more food under uncertainty in the wild. Our theoretical approach is in agreement with neuroscientific data relating to the role of dopamine, a neurotransmitter strongly involved in incentive motivation, and its plausibility has received some explanatory and predictive value with respect to Pavlovian phenomena. Overall, we argue that the occasional and unavoidable absence of food rewards has motivational effects (called incentive hope) that facilitate foraging effort. We show that this hypothesis is computationally tenable, leading foragers in an unpredictable environment to consume more food items and to have higher long-term energy storage than foragers in a predictable environment.

Type
Target Article
Copyright
Copyright © Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abreu, B. F. & Kacelnik, A. (1999) Energy budgets and risk-sensitive foraging in starlings. Behavioral Ecology 10:338–45.Google Scholar
Acquarone, C., Cucco, M., Cauli, S. L. & Malacarne, G. (2002) Effects of food abundance and predictability on body condition and health parameters: Experimental tests with the hooded crow. Ibis 144:E155–63. doi: 10.1046/j.1474-919X.2002.t01-2-00094_1.x.Google Scholar
Ahearn, W., Hineline, P. H. & David, F. G. (1992) Relative preferences for various bivalued ratio schedules. Animal Learning and Behavior 20:407–15. doi: 10.3758/BF03197964.Google Scholar
Amsel, A. (1958) The role of frustrative nonreward in noncontinuous reward situations. Psychological Bulletin 55:102–19. http://dx.doi.org/10.1037/h0043125.Google Scholar
Amsel, A. (1992) Frustration theory. Cambridge University Press.Google Scholar
Amsel, A., MacKinnon, J. R., Rashotte, M. E. & Surridge, C. T. (1964) Partial reinforcement (acquisition) effects within subjects. Journal of the Experimental Analysis of Behavior 7:135–38. doi: 10.1901/jeab.1964.7-135.Google Scholar
Amsel, A. & Roussel, J. (1952) Motivational properties of frustration: I. Effect on a running response of the addition of frustration to the motivational complex. Journal of Experimental Psychology 43:363–68. http://dx.doi.org/10.1037/h0059393.Google Scholar
Anselme, P. (2015a) Incentive salience attribution under reward uncertainty: A Pavlovian model. Behavioural Processes 111:618. http://dx.doi.org/10.1016/j.beproc.2014.10.016.Google Scholar
Anselme, P. (2016) Motivational control of sign-tracking behaviour: A theoretical framework. Neuroscience and Biobehavioral Reviews 65:120. http://dx.doi.org/10.1016/j.neubiorev.2016.03.014.Google Scholar
Anselme, P., Edes, N., Tabrik, S. & Güntürkün, O. (2018) Long-term behavioural sensitization to apomorphine is independent of conditioning and increases conditioned pecking, but not preference, in pigeons. Behavioural Brain Research 336:122–34. http://dx.doi.org/10.1016/j.bbr.2017.08.037.Google Scholar
Anselme, P., Otto, T. & Güntürkün, O. (2017) How unpredictable access to food increases the body fat of small passerines: A mechanistic approach. Behavioural Processes 144:3345. https://doi.org/10.1016/j.beproc.2017.08.013.Google Scholar
Anselme, P. & Robinson, M. J. F. (2013) What motivates gambling behavior: Insight into dopamine's role. Frontiers in Behavioral Neuroscience 7:182. doi: 10.3389/fnbeh.2013.00182.Google Scholar
Anselme, P. & Robinson, M. J. F. (2016) “Wanting,” “liking,” and their relation to consciousness. Journal of Experimental Psychology: Animal Learning and Cognition 42:123–40. http://dx.doi.org/10.1037/xan0000090.Google Scholar
Anselme, P., Robinson, M. J. F. & Berridge, K. C. (2013) Reward uncertainty enhances incentive salience attribution as sign-tracking. Behavioural Brain Research 238:5361. http://dx.doi.org/10.1016/j.bbr.2012.10.006.Google Scholar
Bardo, M. T., Klebaur, J. E., Valone, J. M. & Deaton, C. (2001) Environmental enrichment decreases intravenous self-administration of amphetamine in female and male rats. Psychopharmacology 155: 278–84. doi: 10.1007/s002130100720.Google Scholar
Barrot, M., Marinelli, M., Abrous, D. N., Rougé-Pont, F., Le Moal, M. & Piazza, P. V. (2000) The dopaminergic hyper-responsiveness of the shell of the nucleus accumbens is hormone-dependent. European Journal of Neuroscience 12(3):973–79.Google Scholar
Bartness, T. J., Keen-Rhinehart, E., Dailey, M. J. & Teubner, B. J. (2011) Neural and hormonal control of food hoarding. American Journal of Physiology 301:R641R655. doi: 10.1152/ajpregu.00137.2011.Google Scholar
Bateson, M., Emmerson, E., Ergün, G., Monaghan, P. & Nettle, D. (2015) Opposite effects of early-life competition and developmental telomere attribution on cognitive bias in juvenile European starlings. PLoS ONE 10:e0132602. doi: 10.1371/journal.pone.0132602.Google Scholar
Bateson, M. & Kacelnik, A. (1995) Preferences for fixed and variable food sources: Variability in amount and delay. Journal of the Experimental Analysis of Behavior 63:313–29. doi: 10.1901/jeab.1995.63-313.Google Scholar
Bateson, M. & Kacelnik, A. (1997) Starlings’ preference for predictable and unpredictable delays to food. Animal Behaviour 53(6):1129–42. https://doi.org/10.1006/anbe.1996.0388.Google Scholar
Bauer, C. M., Glassman, L. W., Cyr, N. E. & Romero, L. M. (2011) Effects of predictable and unpredictable food restriction on the stress response in molting and non-molting European starlings (Sturnus vulgaris). Comparative Biochemistry and Physiology A 160:390–99. http://dx.doi.org/10.1016/j.cbpa.2011.07.009.Google Scholar
Bean, D., Mason, G. J. & Bateson, M. (1999) Contrafreeloading in starlings: Testing the information hypothesis. Behaviour 136:1267–82.Google Scholar
Bechtel, W. & Abrahamsen, A. (1991) Connectionism and the mind. An introduction to parallel processing in networks. Basil Blackwell.Google Scholar
Beckmann, J. S. & Bardo, M. T. (2012) Environmental enrichment reduces attribution of incentive salience to a food-associated stimulus. Behavioural Brain Research 226:331–34. doi: 10.1016/j.bbr.2011.09.021.Google Scholar
Beckmann, J. S. & Chow, J. J. (2015) Isolating the incentive salience of reward associated stimuli: Value, choice, and persistence. Learning and Memory 22:116–27. doi: 10.1101/lm.037382.114.Google Scholar
Beckmann, J. S., Marusish, J. A., Gipson, C. D. & Bardo, M. T. (2011) Novelty seeking, incentive salience and acquisition of cocaine administration in the rat. Behavioural Brain Research 216:159–65. http://dx.doi.org/10.1016/j.bbr.2010.07.022.Google Scholar
Bednekoff, P. A. & Krebs, J. R. (1995) Great tit fat reserves – effects of changing and unpredictable feeding day length. Functional Ecology 9:457–62. doi: 10.2307/2390009.Google Scholar
Belke, T. W. & Spetch, M. L. (1994) Choice between reliable and unreliable reinforcement alternatives revisited: Preference for unreliable reinforcement. Journal of the Experimental Analysis of Behavior 62:353–66.Google Scholar
Berridge, K. C. (1999) Pleasure, pain, desire, and dread: Hidden core processes of emotion. In: Well-being: The foundations of hedonic psychology, ed. Kahneman, D., pp. 525–57. Russell Sage Foundation.Google Scholar
Berridge, K. C. (2007) The debate over dopamine's role in reward: The case for incentive salience. Psychopharmacology 191:391431. doi: 10.1007/s00213-006-0578-x.Google Scholar
Berridge, K. C. (2012) From prediction error to incentive salience: Mesolimbic computation of reward motivation. European Journal of Neuroscience 35:1124–43. doi: 10.1111/j.1460-9568.2012.07990.x.Google Scholar
Berridge, K. C. & Robinson, T. E. (1998) What is the role of dopamine in reward: Hedonic impact, reward learning, or incentive salience? Brain Research Review 28:309–69. doi: http://dx.doi.org/10.1016/S0165-0173(98)00019-8.Google Scholar
Blaiss, C. A. & Janak, P. H. (2009) The nucleus accumbens core and shell are critical for the expression, but not the consolidation, of Pavlovian conditioned approach. Behavioural Brain Research 200:2232. http://dx.doi.org/10.1016/S0165-0173(98)00019-8.Google Scholar
Boakes, R. A. (1977) Performance on learning to associate a stimulus with positive reinforcement. In: Operant Pavlovian interactions, ed. Davis, H. & Hurvitz, H. M. B., pp. 6797. Erlbaum.Google Scholar
Bodor, J. N., Rice, J. C., Farley, T. A., Swalm, C. M. & Rose, D. (2010) The association between obesity and urban food environments. Journal of Urban Health 87:771–81. doi: 10.1007/s11524-010-9460-6.Google Scholar
Bonnet, O., Fritz, H., Ginoux, J. & Meuret, M. (2010) Challenges of foraging on a high-quality but unpredictable food source: The dynamics of grass production and consumption in savanna grazing lawns. Journal of Ecology 98:908–16. doi: 10.1111/j.1365-2745.2010.01663.x.Google Scholar
Breuner, C. W. (1998) The avian stress response: Corticosterone and behaviour in a wild, seasonal vertebrate. Unpublished PhD dissertation, University of Washington.Google Scholar
Brodin, A. (2007) Theoretical models of adaptive energy management in small wintering birds. Philosophical Transactions of the Royal Society B: Biological Sciences 362:1857–71. doi: 10.1098/rstb.2006.1812.Google Scholar
Bronson, F. H. & Desjardins, C. (1982) Endocrine response to sexual arousal in mice. Endocrinology 111:1286–91.Google Scholar
Cabanac, M. (1992) Pleasure: The common currency. Journal of Theoretical Biology 155:173200.Google Scholar
Cabanac, M. & Swiergiel, A. H. (1989) Rats eating and hoarding as a function of body weight and cost of foraging. American Journal of Physiology 26:R95257.Google Scholar
Cabib, S. & Puglisi-Allegra, S. (2012) The mesoaccumbens dopamine in coping with stress. Neuroscience and Biobehavioral Reviews 36:7989. doi: 10.1016/j.neubiorev.2011.04.012.Google Scholar
Cardinal, R. N. (2006) Neural systems implicated in delayed and probabilistic reinforcement. Neural Networks 19:12771301. http://dx.doi.org/10.1016/j.neunet.2006.03.004.Google Scholar
Carpenter, F. L. & Hixon, M. A. (1988) A new function for torpor: Fat conservation in a wild migrant hummingbird. Condor 90:373–78.Google Scholar
Cheon, B. K. & Hong, Y.-Y. (2017) Mere experience of low subjective socioeconomic status stimulates appetite and food intake. Proceedings of the National Academy of Sciences USA 114:7277. Available at: http://www.pnas.org/cgi/doi/10.1073/pnas.1607330114.Google Scholar
Chow, J. J., Smith, A. P., Wilson, A. G., Zentall, T. R. & Beckmann, J. S. (2017) Suboptimal choice in rats: Incentive salience attribution promotes maladative decision-making. Behavioural Brain Research 320:244–54. http://dx.doi.org/10.1016/j.bbr.2016.12.013.Google Scholar
Collins, L. & Pearce, J. M. (1985) Predictive accuracy and the effects of partial reinforcement on serial autoshaping. Journal of Experimental Psychology: Animal Behavior Processes 11:548–64. http://dx.doi.org/10.1037/0097-7403.11.4.548.Google Scholar
Collins, L., Young, D. B., Davies, K. & Pearce, J. M. (1983) The influence of partial reinforcement on serial autoshaping with pigeons. Quarterly Journal of Experimental Psychology 35 B:275–90. http://dx.doi.org/10.1080/14640748308400893.Google Scholar
Coover, G. D., Murison, R., Sundberg, H., Jellestad, F. & Ursin, H. (1984) Plasma corticosterone and meal expectancy in rats: Effects of low probability cues. Physiology and Behavior 33:179–84.Google Scholar
Cornelius, E. A., Vezina, F., Regimbald, L., Hallot, F., Petit, M., Love, O. P. & Karasov, W. H. (2017) Chickadees faced with unpredictable food increase fat reserves but certain components of their immune function decline. Physiological and Biochemical Zoology 90:190200. doi: 10.1086/68991.Google Scholar
Corwin, R. L. W. (2011) The face of uncertainty eats. Current Drug Abuse Reviews 4:174–81.Google Scholar
Cosgrove, K. P., Hunter, R. G. & Caroll, M. E. (2002) Wheel-running attenuates intravenous self-administration in rats: Sex differences. Pharmacology, Biochemistry, and Behavior 73:663–71.Google Scholar
Crawford, L. L., Steirn, J. N. & Pavlik, W. B. (1985) Within- and between-subjects partial reinforcement effects with an autoshaped response using Japanese quail (Coturnix coturnix japonica). Animal Learning and Behavior 13:8592.Google Scholar
Cresswell, W. (2003) Testing the mass-dependent predation hypothesis: In European blackbirds poor foragers have higher overwinter body reserves. Animal Behaviour 65:1035–44. http://dx.doi.org/10.1006/anbe.2003.2140.Google Scholar
Cucco, M., Ottonelli, R., Raviola, M. & Malacarne, G. (2002) Variations of body mass and immune function in response to food unpredictability in magpies. Acta Oecologia 23:271–76. http://dx.doi.org/10.1016/S1146-609X(02)01154-2.Google Scholar
Cuthill, I. C., Hunt, S., Cleary, C. & Clark, C. (1997) Colour bands, dominance, and body mass regulation in male zebra finches (Taeniopygia guttata). Proceedings of the Royal Society B:Biological Sciences 264:1093–99.Google Scholar
Cuthill, I. C., Maddocks, S. A., Weall, C. V. & Jones, E. K. M. (2000) Body mass regulation in response to changes in feeding predictability and overnight energy expenditure. Behavioral Ecology 11:189–95.Google Scholar
Dall, S. R. X. & Witter, M. S. (1998) Feeding interruptions, mass changes and daily routines of behaviour in the zebra finch. Animal Behaviour 55:715–25. http://dx.doi.org/10.1006/anbe.1997.0749.Google Scholar
Daunt, F., Afanasyev, V., Silk, J. R. D. & Wanless, S. (2006) Extrinsic and intrinsic determinants of winter foraging and breeding phenology in a temperate seabird. Behavioral Ecology and Sociobiology 59:381–88.Google Scholar
Day, J. J., Jones, J. L., Wigthtman, R. M. & Carelli, R. M. (2010) Phasic nucleus accumbens dopamine release encodes effort- and delay-related costs. Biological Psychiatry 68:306309. http://dx.doi.org/10.1016/j.biopsych.2010.03.026.Google Scholar
Day, J. J., Wheeler, R. A., Roitman, M. F. & Carelli, R. M. (2006) Nucleus accumbens neurons encode Pavlovian approach behaviors: Evidence from an autoshaping paradigm. European Journal of Neuroscience 23:1341–51. doi: 10.1111/j.1460-9568.2006.04654.x.Google Scholar
de Lafuente, V. & Romo, R. (2011) Dopamine neurons code subjective sensory experience and uncertainty of perceptual decisions. Proceedings of the National Academy of Sciences USA 108:19767–71. doi: 10.1073/pnas.1117636108.Google Scholar
Diaz, L. R., Siontas, D., Mendoza, J. & Arvanitogiannis, A. (2013) High levels of wheel running protect against behavioral sensitization to cocaine. Behavioural Brain Research 237:8285. https://doi.org/10.1016/j.bbr.2012.09.014.Google Scholar
Dickson, P. E., McNaughton, K. A., Hou, L., Anderson, L. C., Long, K. H. & Chesler, E. J. (2015) Sex and strain influence attribution to incentive salience to reward cues in mice. Behavioural Brain Research 292:305–15. http://dx.doi.org/10.1016/j.bbr.2015.05.039.Google Scholar
Dodd, M. L., Klos, K. J., Bower, J. H., Geda, Y. E., Josephs, K. A. & Ahlskog, J. E. (2005) Pathological gambling caused by drugs used to treat Parkinson disease. Archives of Neurology 62:1377–81. doi: 10.1001/archneur.62.9.noc50009.Google Scholar
Dolnik, W. R. (1967) Bioenergetische anpassungen der vogel an die uberwinterung in verschledenen Breiten. Der Falke 14:305306, 347–49.Google Scholar
Domjan, M. (2005) Pavlovian conditioning: A functional perspective. Annual Review of Psychology 56:179206. doi: 10.1146/annurev.psych.55.090902.141409.Google Scholar
Dreher, J.-C., Kohn, P. & Berman, K. F. (2006) Neural coding of distinct statistical properties of reward information in humans. Cerebral Cortex 16:561–73. doi: 10.1093/cercor/bhj004.Google Scholar
Dukas, R. & Kamil, A. C. (2000) The cost of limited attention in blue jays. Behavioral Ecology 11:502506. https://doi.org/10.1093/beheco/11.5.502.Google Scholar
Dunn, R. & Spetch, M. L. (1990) Choice with uncertain outcomes: Conditioned reinforcement effects. Journal of the Experimental Analysis of Behavior 53:201–18.Google Scholar
Durstewitz, D., Kröner, S. & Güntürkün, O. (1999) The dopaminergic innervation of the avian telencephalon. Progress in Neurobiology 59:161–95.Google Scholar
Ekman, J. B. & Hake, M. K. (1990) Monitoring starvation risk: Adjustments of body reserves in greenfinches (Carduelis chloris L.) during periods of unpredictable foraging success. Behavioral Ecology 1:6267.Google Scholar
Ekman, J. B. & Lilliendahl, K. (1993) Using priority to food access: Fattening strategies in dominance-structured willow tit (Parus montanus) flocks. Behavioral Ecology 4:232–38.Google Scholar
Estle, S. J., Green, L., Myerson, J. & Holt, D. D. (2006) Differential effects of amounts on temporal and probability discounting of gains and losses. Memory and Cognition 34:914–28. doi: 10.3758/BF03193437.Google Scholar
Everitt, B. J. & Robbins, T. W. (2005) Neural systems of reinforcement for drug addiction: From actions to habits to compulsion. Nature Neuroscience Review 8:1481–89. doi: 10.1038/nn1579.Google Scholar
Feenders, G. & Smulders, T. V. (2011) Magpies can use local cues to retrieve their food caches. Animal Cognition 14:235–43. doi: 10.1007/s10071-010-0357-2.Google Scholar
Field, D. P., Tonneau, F., Ahearn, W. & Hineline, P. N. (1996) Preference between variable-ratio and fixed-ratio schedules: Local and extended relations. Journal of Experimental Analysis of Behavior 66:283–95. doi: 10.1901/jeab.1996.66-283.Google Scholar
Fiorillo, C. D., Tobler, P. N. & Schultz, W. (2003) Discrete coding of reward probability and uncertainty by dopamine neurons. Science 299(5614):1898–902. doi: 10.1126/science.1077349.Google Scholar
Flagel, S. B., Cameron, C. M., Pickup, K. N., Watson, S. J., Akil, H. & Robinson, T. E. (2011a) A food predictive cue must be attributed with incentive salience for it to induce c-Fos mRNA expression in cortico-striatal-thalamic brain regions. Neuroscience 196:8096. http://dx.doi.org/10.1016/j.neuroscience.2011.09.004.Google Scholar
Flagel, S. B., Clark, J. J., Robinson, T. E., Mayo, L., Czuj, A., Willuhn, I., Akers, C. A., Clinton, S. M., Phillips, P. E. M. & Akil, H. (2011b) A selective role for dopamine in stimulus-reward learning. Nature 469:5357. doi: 10.1038/nature09588.Google Scholar
Flagel, S. B., Robinson, T. E., Clark, J. J., Clinton, S. M., Watson, S. J., Seeman, P., Phillips, P. E. M. & Akil, H. (2010) An animal model of genetic vulnerability to behavioral disinhibition and responsiveness to reward-related cues: Implications for addiction. Neuropsychopharmacology 35:388400. doi: 10.1038/npp.2009.142.Google Scholar
Flagel, S. B., Watson, S. J., Robinson, T. E. & Akil, H. (2007) Individual differences in the propensity to approach signals vs goals promote different adaptations in the dopamine system of rats. Psychopharmacology 191:599607. doi: 10.1007/s00213-006-0535-8.Google Scholar
Fokidis, H. B., Burin des Roziers, M., Sparr, R., Rogowski, C., Sweazea, K., & Deviche, P. (2012) Unpredictable food availability induces metabolic and hormonal changes independent of food intake in a sedentary songbird. Journal of Experimental Biology 215:2920–30.Google Scholar
Forkman, B. (1991) Some problems with current patchchoice theory: A study on the Mongolian gerbil. Behaviour 117:243–54.Google Scholar
Forkman, B. (1993) The effect of uncertainty on the food intake of the Mongolian gerbil. Behaviour 124:197206.Google Scholar
Forkman, B. (1996) The foraging behaviour of Mongolian gerbils: A behavioural need or a need to know? Behaviour 133:129–43.Google Scholar
Foster, M. T., Solomon, M. B., Huhman, K. L. & Bartness, T. J. (2006) Social defeat increases food intake, body mass, and adiposity in Syrian hamsters. American Journal of Physiology 290:R128493. doi: 10.1152/ajpregu.00437.2005.Google Scholar
Freidin, E., Aw, J. & Kacelnik, A. (2009) Sequential and simultaneous choices: Testing the diet selection and sequential choice models. Behavioural Processes 80:218–23. doi: 10.1016/j.beproc.2008.12.001.Google Scholar
Fuller, R. W. & Snody, H. D. (1981) Elevation of serum corticosterone by pergolide and other dopaminergic agonists, Endocrinology 109:1026–32.Google Scholar
Genn, R. F., Ahn, S. & Phillips, A. G. (2004) Attenuated dopamine efflux in the rat nucleus accumbens during successive negative contrast. Behavioral Neuroscience 118:869–73. http://dx.doi.org/10.1037/0735-7044.118.4.869.Google Scholar
Gibbon, J., Farrell, L., Locurto, C. M., Duncan, H. J. & Terrace, H. S. (1980) Partial reinforcement in autoshaping with pigeons. Animal Learning and Behavior 8:4559. doi: 10.3758/BF03209729.Google Scholar
Gipson, C. D., Alessandri, J. J. D., Miller, H. C. & Zentall, T. R. (2009) Preference for 50% reinforcement over 75% reinforcement by pigeons. Learning and Behavior 37:289–98.Google Scholar
Gosler, A. G. (1996) Environmental and social determinants of winter fat storage in the great tit Parus major. Journal of Animal Ecology 65:117. doi: 10.2307/5695.Google Scholar
Gosler, A. G., Greenwood, J. J. D. & Perrins, C. (1995) Predation risk and the cost of being fat. Nature 377:621–23. doi: 10.1038/377621a0.Google Scholar
Gottlieb, D. A. (2004) Acquisition with partial and continuous reinforcement in pigeon autoshaping. Learning and Behavior 32:321–34. doi: 10.3758/BF03196031.Google Scholar
Gottlieb, D. A. (2005) Acquisition with partial and continuous reinforcement in rat magazine approach. Journal of Experimental Psychology: Animal Behavior Processes 31:319–33.Google Scholar
Gottlieb, D. A. (2006) Effects of partial reinforcement and time between reinforced trials on terminal response rate in pigeon autoshaping. Behavioral Processes 72:613. http://dx.doi.org/10.1016/j.beproc.2005.11.008.Google Scholar
Haftorn, S. (1976) Variation in body weight, wing length and tail length in the great tit Parus major. Norwegian Journal of Zoology 4:241–71.Google Scholar
Haftorn, S. (1992) The diurnal body weight cycle in titmice Parus spp. Ornis Scandinavia 23:435–43. doi: 10.2307/3676674.Google Scholar
Hake, M. (1996) Fattening strategies in dominance-structured greenfinch (Carduelis chloris) flocks in winter. Behavioral Ecology and Sociobiology 39:7176. doi: 10.1007/s002650050268.Google Scholar
Hariri, A. R., Brown, S. M., Williamson, D. E., Flory, J. D., de Wit, H. & Manuck, S. B. (2006) Preference for immediate over delayed rewards is associated with magnitude of ventral striatal activity. Journal of Neuroscience 26:13213–17. doi: 10.1523/JNEUROSCI.3446-06.2006.Google Scholar
Hart, A. S., Clark, J. J. & Phillips, P. E. M. (2015) Dynamic shaping of dopamine signals during probabilistic Pavlovian conditioning. Neurobiology of Learning and Memory 117:8492. http://dx.doi.org/10.1016/j.nlm.2014.07.010.Google Scholar
Havelka, J. (1956) Problem-seeking behaviour in rats. Canadian Journal of Psychology 10:9197.Google Scholar
Hearst, E. & Jenkins, H. M. (1974) Sign tracking: The stimulus-reinforcer relation and directed action. Monograph of the Psychonomic Society.Google Scholar
Hellberg, S. N., Levit, J. D. & Robinson, M. J. F. (2018) Under the influence: Effects of adolescent ethanol exposure and anxiety on motivation for uncertain gambling-like cues in male and female rats. Behavioural and Brain Research 337:1733.Google Scholar
Helms, C. W. (1968) Food, fat and feathers. American Zoologist 8:151–67.Google Scholar
Heppner, F. (1965) Sensory mechanisms and environmental clues used by the American robin in locating earthworms. The Condor 67:247–56. doi: 10.2307/1365403.Google Scholar
Hill, J. O. & Peters, J. C. (1998) Environmental contributions to the obesity epidemic. Science 280:1371–74.Google Scholar
Hiraldo, F. & Donázar, J. A. (1990) Foraging time in the cinereous vulture Aegypius monachus: Seasonal and local variations and influence of weather. Bird Study 37:128–32.Google Scholar
Hollis, K. L. (1997) Contemporary research on Pavlovian conditioning: A “new” functional analysis. American Psychologist 52:956–65. http://dx.doi.org/10.1037/0003-066X.52.9.956.Google Scholar
Honma, K., Honma, S. & Hiroshige, T. (1984) Feeding-associated corticosterone peak in rats under various feeding cycles. American Journal of Physiology 246:R72126.Google Scholar
Houston, A. I., McNamara, J. M. & Hutchinson, J. M. C. (1993) General results concerning the trade-off between gaining energy and avoiding predation. Philosophical Transactions of the Royal Society B: Biological Sciences 341:375–97. doi: 10.1098/rstb.1993.0123.Google Scholar
Hug, J. J. & Amsel, A. (1969) Frustration theory and partial reinforcement effects: The acquisition-extinction paradox. Psychological Review 76:419–21. http://dx.doi.org/10.1037/h0027419.Google Scholar
Hurly, T. A. (1992) Energetic reserves of marsh tits (Parus palustris): Food and fat storage in response to variable food supply. Behavioral Ecology 3:181–88.Google Scholar
Inglis, I. R. (1983) Towards a cognitive theory of exploratory behaviour. In: Exploration in animals and humans, ed. Archer, J. & Burke, L., pp. 72116. Van Nostrand Reinhold.Google Scholar
Inglis, I. R., Forkman, B. & Lazarus, J. (1997) Free food or earned food? A review and fuzzy model of contrafreeloading. Animal Behaviour 53:1171–91.Google Scholar
Inglis, I. R., Langton, S., Forkman, B. & Lazarus, J. (2001) An information primacy model of exploratory and foraging behaviour. Animal Behavior 62:543–57. https://doi.org/10.1006/anbe.2001.1780Google Scholar
Jenni-Eiermann, S., Glaus, E., Gruebler, M., Schwabl, H. & Jenni, L. (2008) Glucocorticoid response to food availability in breeding barn swallows (Hirundo rustica). General and Comparative Endocrinology 155:558–65. http://dx.doi.org/10.1016/j.ygcen.2007.08.011.Google Scholar
Johnson, P. S., Madden, G. J., Brewer, A. T., Pinkston, J. W. & Fowler, S. C. (2011) Effects of acute pramipexole on preference for gambling-like schedules of reinforcement in rats. Psychopharmacology 213:1118. doi: 10.1007/s00213-010-2006-5.Google Scholar
Joutsa, J., Johansson, J., Niemelä, S., Ollikainen, A., Hirvonen, M. M., Piepponen, P., Arponen, E., Alho, H., Voon, V., Rinne, J. O., Hietala, J. & Kaasinen, V. (2012) Mesolimbic dopamine release is linked to symptom severity in pathological gambling. NeuroImage 60:1992–99. doi: 10.1016/j.neuroimage.2012.02.006.Google Scholar
Kacelnik, A. & Bateson, M. (1996) Risky theories: The effects of variance on foraging decisions. American Zoologist 36:402–34. https://doi.org/10.1093/icb/36.4.402.Google Scholar
Kaye, H. & Pearce, J. M. (1984) The strength of the orienting response during blocking. Quarterly Journal of Experimental Psychology B 36:131–44. http://dx.doi.org/10.1080/14640748408402199.Google Scholar
King, J. R. & Farner, D. S. (1965) Studies of fat deposition in migratory birds. Annals of the New York Academy of Science 131:422–40. doi: 10.1111/j.1749-6632.1965.tb34808.x.Google Scholar
King, J. R. & Farner, D. S. (1966) The adaptive role of winter fattening in the white crowned sparrow with comments on its regulation. American Naturalist 100:403–18. http://www.jstor.org/stable/2459241.Google Scholar
Kobayashi, S. & Schultz, W. (2008) Influence of reward delays on responses of dopamine neurons. Journal of Neuroscience 28:7837–46. http://dx.doi.org/10.1523/JNEUROSCI.1600-08.2008.Google Scholar
Kouřimská, L. & Adámková, A. (2016) Nutritional and sensory quality of edible insects. NFS Journal 4:2226. http://dx.doi.org/10.1016/j.nfs.2016.07.001.Google Scholar
Kramer, D. L. & Weary, D. M. (1991) Exploration versus exploitation: A field study of time allocation to environmental tracking by foraging chipmunks. Animal Behaviour 91:443–49.Google Scholar
Krams, I. (2000) Length of feeding day and body weight of great tits in a single- and two-predator environment. Behavioral Ecology and Sociobiology 48:147–53. doi: 10.1007/s002650000214.Google Scholar
Krieger, D. T. (1974) Food and water restriction shifts corticosterone temperature activity and brain amine periodicity. Endocrinology 95:1195–201.Google Scholar
Kullberg, C., Fransson, T. & Jakobsson, S. (1996) Impaired predator evasion in fat blackcaps (Sylvia atricapilla). Proceedings of the Royal Society B: Biological Sciences 263:1671–75. doi: 10.1098/rspb.1996.0244.Google Scholar
Laran, J. & Salerno, A. (2013) Life-history strategy, food choice, and caloric consumption. Psychological Science 24:167–73. doi: 10.1177/0956797612450033.Google Scholar
Laude, J. R., Stagner, J. P. & Zentall, T. R. (2014) Suboptimal choice by pigeons may result from the diminishing effect of nonreinforcement. Journal of Experimental Psychology: Animal Learning and Cognition 40:1221.Google Scholar
Lea, S. E. G. (1979) Foraging and reinforcement schedules in the pigeon: Optimal and non-optimal aspects of choice. Animal Behaviour 27:875–86.Google Scholar
Lehikoinen, E. (1987) Seasonality of the daily weight cycle in wintering passerines and its consequences. Ornis Scandinavia 18:216–26. doi: 10.2307/3676769.Google Scholar
Lespine, L.-F. & Tirelli, E. (2015) The protective effects of free wheel-running against cocaine psychomotor sensitization persist after exercise cessation in C57BL/6J mice. Neuroscience 310:650–64. http://dx.doi.org/10.1016/j.neuroscience.2015.10.009.Google Scholar
Leszczuk, M. H. & Flaherty, C. F. (2000) Lesions of the nucleus accumbens reduce instrumental but not consummatory negative contrast in rats. Behavioural Brain Research 116:6179. https://doi.org/10.1016/S0166-4328(00)00265-5.Google Scholar
Lilliendahl, K. (1998) Yellowhammers get fatter in the presence of a predator. Animal Behaviour 55:1335–40. doi: 10.1006/anbe.1997.0706.Google Scholar
Lima, S. L. (1986) Predation risk and unpredictable feeding conditions: Determinants of body mass in birds. Ecology 67:377–85. doi: 10.2307/1938580.Google Scholar
Linnet, J., Mouridsen, K., Peterson, E., Møller, A., Doudet, D. J. & Gjedde, A. (2012) Striatal dopamine release codes uncertainty in pathological gambling. Psychiatry Research: Neuroimaging 204:5560. http://dx.doi.org/10.1016/j.pscychresns.2012.04.012.Google Scholar
Lomanowska, A. M., Lovic, V., Rankine, M. J., Mooney, S. J., Robinson, T. E. & Kraemer, G. W. (2011) Inadequate early social experience increases the incentive salience of reward-related cues in adulthood. Behavioural Brain Research 220:9199. doi: 10.1016/j.bbr.2011.01.033.Google Scholar
Lovette, I. J. & Holmes, R. T. (1995) Foraging behavior of American redstarts in breeding and wintering habitats: Implications for relative food availability. Condor 97:782–91. doi: 10.2307/1369186.Google Scholar
Lucas, J. R. (1994) Regulation of cache stores and body mass in Carolina chickadees (Parus carolinensis). Behavioral Ecology 5:171–81.Google Scholar
Lundberg, P. (1985) Dominance behaviour, body weight and fat variations, and partial migration in European blackbirds Turdus merula. Behavioral Ecology and Sociobiology 17:185–89. doi: 10.1007/BF00299250.Google Scholar
MacLeod, R., Lind, J., Clark, J. & Cresswell, W. (2007) Mass regulation in response to predation risk can indicate population declines. Ecology Letters 10: 945–55. doi: 10.1111/j.1461-0248.2007.01088.x.Google Scholar
Madden, G. J., Dake, J. M., Mauel, E. C., & Rowe, R. R. (2005) Labor supply and consumption of food in a closed economy under a range of fixed- and random-ratio schedules: Tests of unit price. Journal of the Experimental Analysis of Behavior 83: 99118. doi: 10.1901/jeab.2005.32-04.Google Scholar
Marasco, V., Boner, W., Heidinger, B., Griffiths, K. & Monaghan, P. (2015) Repeated exposure to stressful conditions can have beneficial effects on survival. Experimental Gerontology 69:170–75.Google Scholar
Martins, T. L. F., Roberts, M. L., Giblin, I., Huxham, R. & Evans, M. R. (2007) Speed of exploration and risk-taking behavior are linked to corticosterone titres in zebra finches. Hormones and Behavior 52:445–53.Google Scholar
Mazur, J. E. (1987) An adjusting procedure for studying delayed reinforcement. In: Quantitative analyses of behavior, Vol. 5. The effect of delay and of intervening events on reinforcement value, ed. Commons, M. L., Mazur, J. E., Nevin, J. A. & Rachlin, H., pp. 5573. Erlbaum.Google Scholar
Mazur, J. E. (1991) Choice with probabilistic reinforcement: Effects of delay and conditioned reinforcers. Journal of the Experimental Analysis of Behavior 55:6377.Google Scholar
McDevitt, M. A., Dunn, R. M., Spetch, M. L. & Ludvig, E. A. (2016) When good news leads to bad choices. Journal of the Experimental Analysis of Behavior 105(1):2340. http://doi.org/10.1002/jeab.192.Google Scholar
McNamara, J. M. & Houston, A. I. (1985) Optimal foraging and learning. Journal of Theoretical Biology 117:231–49.Google Scholar
McNamara, J. M. & Houston, A. I. (1990) The value of fat reserves and the tradeoff between starvation and predation. Acta Biotheoretica 38:3761. doi: 10.1007/BF00047272.Google Scholar
McNamara, J. M. & Houston, A. I. (2009) Integrating function and mechanism. Trends in Ecology and Evolution 24:670–75.Google Scholar
Meyer, P. J., Cogan, E. S. & Robinson, T. E. (2014) The form of a conditioned stimulus can influence the degree to which it acquires incentive motivational properties. PLoS ONE 9:e98163. http://dx.doi.org/10.1371/journal.pone.0098163.Google Scholar
Meyer, P. J., Lovic, V., Saunders, B. T., Yager, L. M., Flagel, S. B., Morrow, J. D. & Robinson, T. E. (2012) Quantifying individual variation in the propensity to attribute incentive salience to reward cues. PLoS ONE 7:e38987. http://dx.doi.org/10.1371/journal.pone.0038987.Google Scholar
Nader, J., Chauvet, C., Rawas, R. E., Favot, L., Jaber, M., Thiriet, N. & Solinas, M. (2012) Loss of environmental enrichment increases vulnerability to cocaine addiction. Neuropsychopharmacology 37:1579–87. doi: 10.1038/npp.2012.2.Google Scholar
Nettle, D., Andrews, C. & Bateson, M. (2017) Food insecurity as a driver of obesity in humans: The insurance hypothesis. Behavioral and Brain Sciences 40:E105. https://doi.org/10.1017/S0140525X16000947.Google Scholar
Nower, L. & Blaszczynski, A. (2010) Gambling motivations, money-limiting strategies, and precommitment preferences of problem versus non-problem gamblers. Journal of Gambling Studies 26:361372. doi: 10.1007/s10899-009-9170-8.Google Scholar
O'Hagan, D., Andrews, C. P., Bedford, T., Bateson, M. & Nettle, D. (2015) Early life disadvantage strengthens flight performance trade-offs in European starlings, Sturnus vulgaris. Animal Behaviour 102:141–48. http://dx.doi.org/10.1016/j.anbehav.2015.01.016.Google Scholar
Orduna, V. & Bouzas, A. (2004) Energy budget versus temporal discounting as determinants of preference in risky choice. Behavioural Processes 67:147–56. http://dx.doi.org/10.1016/j.beproc.2004.03.019.Google Scholar
Oswald, L. M., Wong, D. F., McCaul, M., Zhou, Y., Kuwabara, H., Choi, L., Brasic, J. & Wand, G. S. (2005) Relationships among ventral striatal dopamine release, cortisol secretion, and subjective responses to amphetamine. Neuropsychopharmacology 30:821–32.Google Scholar
Papini, M. R. & Overmier, J. B. (1984) Autoshaping in pigeons: Effects of partial reinforcement on acquisition and extinction. Revista Interamericana de Psicologia 18:7586.Google Scholar
Papini, M. R. & Overmier, J. B. (1985) Partial reinforcement and autoshaping of the pigeon's key-peck behavior. Learning and Motivation 16:109–23.Google Scholar
Partecke, J., Schwabl, I. & Gwinner, E. (2006) Stress and the city: Urbanization and its effects on the stress physiology in European blackbirds. Ecology 87:1945–52.Google Scholar
Pattison, K. F., Laude, J. R. & Zentall, T. R. (2013) Environmental enrichment affects suboptimal, risky, gambling-like choice by pigeons. Animal Cognition 16:429–34. doi: 10.1007/s10071-012-0583-x.Google Scholar
Pearce, J. M. & Hall, G. (1980) A model for Pavlovian learning: Variations in the effectiveness of conditioned but not of unconditioned stimuli. Psychological Review 87:532–52. http://dx.doi.org/10.1037/0033-295X.87.6.532.Google Scholar
Pearce, J. M., Kaye, H. & Hall, G. (1982) Predictive accuracy and stimulus associability: Development of a model for Pavlovian conditioning. In: Quantitative analyses of behaviour, vol. III, ed. Commons, M. L., Herrnstein, R. J. & Wagner, A. R., pp. 241–55. Ballinger.Google Scholar
Peciña, S., Schulkin, J. & Berridge, K. C. (2006) Nucleus accumbens corticotropin-releasing factor increases cue-triggered motivation for sucrose reward: Paradoxical positive incentive effects in stress? BMC Biology 4:8. doi: 10.1186/1741-7007-4-8.Google Scholar
Piazza, P. V., RougePont, F., Deroche, V., Maccari, S., Simon, H. & LeMoal, M. (1996) Glucocorticoids have state-dependent stimulant effects on the mesencephalic dopaminergic transmission. Proceedings of the National Academy of Sciences USA 93(16):8716–20. doi: 10.1073/pnas.93.16.8716.Google Scholar
Polo, V. & Bautista, L. M. (2006) Daily routines of body mass gain in birds: 2. An experiment with reduced food availability. Animal Behaviour 72:517–22. http://dx.doi.org/10.1016/j.anbehav.2005.09.025.Google Scholar
Pravosudov, V. V. (2003) Long-term moderate elevation of corticosterone facilitates avian food-caching behavior and enhances spatial memory. Proceedings of the Royal Society B: Biological Sciences 270:2599–604. doi: 10.1098/rspb.2003.2551.Google Scholar
Pravosudov, V. V. (2006) On seasonality in food-storing behaviour in parids: Do we know the whole story? Animal Behaviour 71:1455–60. doi: 10.1016/j.anbehav.2006.01.006.Google Scholar
Pravosudov, V. V. (2007) Stress hormones and the predation-starvation trade-off. In: Foraging: Behavior and ecology, ed. Stephens, D. W., Brown, J. S., & Ydenberg, R. C., pp. 439–42. University of Chicago Press.Google Scholar
Pravosudov, V. V. & Grubb, T. C. Jr. (1997) Management of fat reserves and food caches in tufted titmice (Parus bicolor) in relation to unpredictable food supply. Behavioral Ecology 8(3):332–39.Google Scholar
Pravosudov, V. V. & Grubb, T. C. (1998) Management of fat reserves in tufted titmice Baelophus bicolor in relation to risk of predation. Animal Behaviour 56:4954. doi: 10.1006/anbe.1998.0739.Google Scholar
Pravosudov, V. V., Kitaysky, A. S., Wingfield, J. C. & Clayton, N. S. (2001) Long-term unpredictable foraging conditions and physiological stress response in mountain chickadees (Poecile gambeli). General and Comparative Endocrinology 123:324331. http://dx.doi.org/10.1006/gcen.2001.7684.Google Scholar
Pravosudov, V. V. & Lucas, J. R. (2000) The effect of social dominance on fattening and food caching behaviour in Carolina chickadees, Poecile carolinensis. Animal Behaviour 60:483–93. http://dx.doi.org/10.1006/anbe.2000.1506.Google Scholar
Pravosudov, V. V. & Smulders, T. V. (2010) Integrating ecology, psychology and neurobiology within a food-hoarding paradigm. Philosophical Transactions of the Royal Society B: Biological Sciences 365:859–67.Google Scholar
Preuschoff, K., Bossaerts, P. & Quartz, S. R. (2006) Neural differentiation of expected reward and risk in human subcortical structures. Neuron 51:381–90. http://dx.doi.org/10.1016/j.neuron.2006.06.024.Google Scholar
Ratikainen, I. I. & Wright, J. (2013) Adaptive management of body mass by Siberian Jays. Animal Behaviour 85:427–34. http://dx.doi.org/10.1016/j.anbehav.2012.12.002.Google Scholar
Reiner, A., Perkel, D. J., Bruce, L. L., Butler, A. B., Csillag, A., Kuenzel, W. & Jarvis, E. D. (2004) Revised nomenclature for avian telencephalon and some related brainstem nuclei. Journal of Comparative Neurology 473:377414. doi: 10.1002/cne.20118.Google Scholar
Reneerkens, J., Piersma, T. & Ramenofsky, M. (2002) An experimental test of the relationship between temporal variability of feeding opportunities and baseline levels of corticosterone in a shorebird. Journal of Experimental Zoology 293:8188. doi: 10.1002/jez.10113.Google Scholar
Rescorla, R. A. (1999) Within-subject partial reinforcement extinction effect in autoshaping. Quarterly Journal of Experimental Psychology 52B:7587.Google Scholar
Rescorla, R. A. & Wagner, A. R. (1972) A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreniforcement. In: Classical conditioning II: Current theory and research, ed. Black, A. H. & Prokasy, W. F., pp. 6499. Appleton-Century-Crofts.Google Scholar
Robinson, M. J. F., Anselme, P., Fischer, A. M. & Berridge, K. C. (2014) Initial uncertainty in Pavlovian reward prediction persistently elevates incentive salience and extends sign-tracking to normally unattractive cues. Behavioural Brain Research 266:119–30. http://dx.doi.org/10.1016/j.bbr.2014.03.004.Google Scholar
Robinson, M. J. F., Anselme, P., Suchomel, K. & Berridge, K. C. (2015a) Amphetamine-induced sensitization and reward uncertainty similarly enhance the incentive salience of conditioned cues. Behavioral Neuroscience 129:502–11. http://dx.doi.org/10.1037/bne0000064.Google Scholar
Robinson, T. E. & Berridge, K. C. (1993) The neural basis of drug craving: An incentive-sensitization theory of addiction. Brain Research Review 18:247–91.Google Scholar
Robinson, M. J. F. & Berridge, K. C. (2013) Instant transformation of learned repulsion into motivational “wanting.” Current Biology 23:282–89. http://dx.doi.org/10.1016/j.cub.2013.01.016.Google Scholar
Robinson, T. E. & Flagel, S. B. (2009) Dissociating the predictive and incentive motivational properties of reward-related cues through the study of individual differences. Biological Psychiatry 65(10):869–73. doi: 10.1016/j.biopsych.2008.09.006.Google Scholar
Roesch, M. R., Calu, D. J. & Schoenbaum, G. (2007) Dopamine neurons encode the better option in rats deciding between differently delayed and sized rewards. Nature Neuroscience 10:1615–24. doi: 10.1038/nn2013.Google Scholar
Rogers, C. M. (1987) Predation risk and fasting capacity: Do wintering birds maintain optimal body mass? Ecology 68:1051–61. doi: 10.2307/1938377.Google Scholar
Rose, J., Schiffer, A.-M. & Güntürkün, O. (2013) Striatal dopamine D1 receptors are involved in the dissociation of learning based on reward-magnitude. Neuroscience 230:132–38. http://dx.doi.org/10.1016/j.neuroscience.2012.10.064.Google Scholar
Rougé-Pont, F., Deroche, V., Le Moal, M. & Piazza, P. V. (1998) Individual differences in stress-induced dopamine release in the nucleus accumbens are influenced by corticosterone. European Journal of Neuroscience 10:3903–907.Google Scholar
Sandi, C., Venero, C. & Gauza, C. (1996) Novelty-related rapid locomotor effects of corticosterone in rats. European Journal of Neuroscience 84:794800.Google Scholar
Sanna, F., Bratzu, J., Piludu, M. A., Corda, M. G., Melis, M. R., Giogi, O. & Argiolas, A. (2017) Dopamine, noradrenaline, and differences in sexual behavior between Roman high and low avoidance male rats: A microdialysis study in the medial prefrontal cortex. Frontiers in Behavioral Neuroscience 11:108. https://doi.org/10.3389/fnbeh.2017.00108.Google Scholar
Saunders, B. T. & Robinson, T. E. (2012) The role of dopamine in the accumbens core in the expression of Pavlovian-conditioned responses. European Journal of Neuroscience 36:2521–32. doi: 10.1111/j.1460-9568.2012.08217.x.Google Scholar
Schultz, W. (1998) Predictive reward signal of dopamine neurons. Journal of Neurophysiology 80:127.Google Scholar
Shapiro, M. S., Siller, S. & Kacelnik, A. (2008) Simultaneous and sequential choice as a function of reward delay and magnitude: Normative, descriptive and process-based models tested in the European starling (Sturnus vulgaris). Journal of Experimental Psychology: Animal Behavior Processes 34:7593.Google Scholar
Sherry, D. F. & Mitchell, J. B. (2007) Neuroethology of foraging. In: Foraging: Behavior and ecology, ed. Stephens, D. W., Brown, J. S., & Ydenberg, R. C., pp. 61102. University of Chicago Press.Google Scholar
Shettleworth, S. J., Hampton, R. R. & Westwood, R. P. (1995) Effects of season and photoperiod on food storing by black-capped chickadees, Parus atricapillus. Animal Behaviour 49:989–98.Google Scholar
Shettleworth, S. J., Krebs, J. R., Stephens, D. W. & Gibbon, J. (1988) Tracking a fluctuating environment: A study of sampling. Animal Behaviour 36:87105.Google Scholar
Singer, B. F., Scott-Railton, J. & Vezina, P. (2012) Unpredictable saccharin reinforcement enhances locomotor responding to amphetamine. Behavioural Brain Research 226:340–44. http://dx.doi.org/10.1016/j.bbr.2011.09.003.Google Scholar
Sinha, R. & Jastreboff, A. N. (2013) Stress as a common risk factor for obesity and addiction. Biological Psychiatry 73:827–35.Google Scholar
Smith, A. P. & Zentall, T. R. (2016) Suboptimal choice in pigeons: Choice is primarily based on the value of the conditioned reinforcers rather than overall reinforcement rate. Journal of Experimental Psychology: Animal Learning and Cognition 42(2):212–20. http://dx.doi.org/10.1037/xan0000092.Google Scholar
Solinas, M., Chauvet, C., Thiriet, N., El Rawas, R. & Jaber, M. (2008) Reversal of cocaine addiction by environmental enrichment. Proceedings of the National Academy of Sciences USA 105:17145–50. www.pnas.org_cgi_doi_10.1073_pnas.0806889105.Google Scholar
Spetch, M. L., Belke, T. W., Barnet, R. C., Dunn, R. & Pierce, W. D. (1990) Suboptimal choice in a percentage-reinforcement procedure: Effects of signal condition and terminal-link length. Journal of the Experimental Analysis of Behavior 53:219–34.Google Scholar
Stagner, J. P. & Zentall, T. R. (2010) Suboptimal choice behavior by pigeons. Psychonomic Bulletin and Review 17:412–16.Google Scholar
Stephens, D. W. (2008) Decision ecology: Foraging and the ecology of decision making. Cognitive, Affective, and Behavioral Neuroscience 8:475–84. doi: 10.3758/CABN.8.4.475.Google Scholar
Stephens, D. W. & Anderson, D. (2001) The adaptive value of preference for immediacy: When shortsighted rules have farsighted consequences. Behavioral Ecology 12:330–39.Google Scholar
Stephens, D. W., Kerr, B. & Fernandez-Juricic, E. (2004) Impulsiveness without discounting: The ecological rationality hypothesis. Proceedings of the Royal Society B: Biological Sciences 271:2459–65.Google Scholar
Stephens, D. W. & Krebs, J. R. (1986) Foraging theory. Princeton University Press.Google Scholar
Strochlic, D. E. & Romero, L. M. (2008) The effects of chronic psychological and physical stress on feather replacement in European starlings (Sturnus vulgaris). Comparative Biochemistry and Physiology A 149:6879. http://dx.doi.org/10.1016/j.cbpa.2007.10.011.Google Scholar
Sunsay, C. & Rebec, G. V. (2008) Real-time dopamine efflux in the nucleus accumbens core during Pavlovian conditioning. Behavioral Neuroscience 122:358–67.Google Scholar
Sunsay, C. & Rebec, G. V. (2014) Extinction and reinstatement of phasic dopamine signals in the nucleus accumbens core during Pavlovian conditioning. Behavioral Neuroscience 128:579–87.Google Scholar
Suzuki, S. S. (1986) Autoshaping II: Applicability of the autoshaping principles to some natural learning phenomena. Japanese Journal of Psychonomic Science 5:2736.Google Scholar
Swaffield, J. & Roberts, S. C. (2015) Exposure to cues of harsh or safe environmental conditions alters food preference. Evolutionary Psychological Science 1:6976. doi: 10.1007/s40806-014-0007-z.Google Scholar
Swan, J. A. & Pearce, J. M. (1987) The influence of predictive accuracy on serial autoshaping: Evidence of orienting responses. Journal of Experimental Psychology: Animal Behavior Processes 13:407–17.Google Scholar
Tamms, S. (1987) Tracking varying environments: Sampling by hummingbirds. Animal Behaviour 35:1725–34.Google Scholar
Tan, C. O. & Bullock, D. (2008) A local circuit model of learned striatal and dopamine cell responses under probabilistic schedules of reward. Journal of Neuroscience 28:10062–74.Google Scholar
Tinbergen, N. (1963) On aims and methods of ethology. Zeitschrift für Tierpsychologie 20:410–33. doi: 10.1111/j.1439-0310.1963.tb01161.x.Google Scholar
Tindell, A. J., Smith, K. S., Berridge, K. C. & Aldridge, J. W. (2009) Dynamic computation of incentive salience: “Wanting” what was never “liked.” Journal of Neuroscience 29:12220–28.Google Scholar
Tomie, A., Silberman, Y., Williams, K. & Pohorecky, L. A. (2002) Pavlovian autoshaping procedures increase plasma corticosterone levels in rats. Pharmacology, Biochemistry, and Behavior 72:507–13. http://dx.doi.org/10.1016/S0091-3057(01)00781-X.Google Scholar
Tomie, A., Tirado, A. D., Yu, L. & Pohorecky, L. A. (2004) Pavlovian autoshaping procedures increase plasma corticosterone and levels of norepinephrine and serotonin in prefrontal cortex in rats. Behavioural Brain Research 153:97105. http://dx.doi.org/10.1016/j.bbr.2003.11.006.Google Scholar
Torres, C., Glueck, A. C., Conrad, S. E., Moron, I. & Papini, M. R. (2016) Dorsomedial striatum lesions affect adjustment to reward uncertainty, but not to reward devaluation or omission. Neuroscience 332:1325. http://dx.doi.org/10.1016/j.neuroscience.2016.06.041.Google Scholar
Tremblay, M., Silveira, M. M., Kaur, S., Hosking, J. G., Adams, W. K., Baunez, C. & Winstanley, C. A. (2017) Chronic D2/3 agonist ropinirole treatment increases preference for uncertainty in rats regardless of baseline choice patterns. European Journal of Neuroscience 45:159–66. doi: 10.1111/ejn.13332.Google Scholar
van Balen, J. H. (1980) Population fluctuations of the great tit and feeding conditions in winter. Ardea 68:143–64.Google Scholar
van Holst, R. J., van den Brink, W., Veltman, D. J. & Goudriaan, A. E. (2010) Why gamblers fail to win: A review of cognitive and neuroimaging findings in pathological gambling. Neuroscience and Biobehavioral Reviews 34:87107. doi: 10.1016/j.neubiorev.2009.07.007.Google Scholar
Vasconcelos, M., Monteiro, T., Aw, J. & Kacelnik, A. (2010) Choice in multi-alternative environments: A trial-by-trial implementation of the sequence choice model. Behavioural Processes 84:435–39.Google Scholar
Vasconcelos, M., Monteiro, T. & Kacelnik, A. (2015) Irrational choice and the value of information. Scientific Reports 5:13874. doi: 10.1038/srep13874.Google Scholar
Verdolin, J. L. (2006) Meta-analysis of foraging and predation risk trade-offs in terrestrial systems. Behavioral Ecology and Sociobiology 60:457–64. doi: 10.1007/s00265-006-0172-6.Google Scholar
Wenzel, B. M. (1968) Olfactory prowess of the kiwi. Nature 220:1133–34. doi: 10.1038/2201133a0.Google Scholar
Witter, M. S. & Cuthill, I. C. (1993) The ecological costs of avian fat storage. Philosophical Transactions of the Royal Society B: Biological Sciences 340:7392.Google Scholar
Witter, M. S. & Swaddle, J. P. (1995) Dominance, competition, and energetic reserves in the European starling, Sturnus vulgaris. Behavioral Ecology 6:343–48.Google Scholar
Woodworth, R. S. (1958) Dynamics of behavior. Holt, Rinehart & Winston.Google Scholar
Yin, H. H. & Knowlton, B. J. (2006) The role of the basal ganglia in habit formation. Nature Reviews Neuroscience 7:464–76. 10.1038/nrn1919.Google Scholar
Zack, M., Featherstone, R. E., Mathewson, S. & Fletcher, P. J. (2014) Chronic exposure to a gambling-like schedule of reward predictive stimuli can promote sensitization to amphetamine in rats. Frontiers in Behavioral Neuroscience 8:36. doi: 10.3389/fnbeh.2014.00036.Google Scholar
Zhang, J., Berridge, K. C., Tindell, A. J., Smith, K. S. & Aldridge, J. W. (2009) A neural computational model of incentive salience. PLoS Computational Biology 5:e1000437.Google Scholar
Supplementary material: File

Anselme and Güntürkün supplementary material

Anselme and Güntürkün supplementary material

Download Anselme and Güntürkün supplementary material(File)
File 267.1 KB