Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-22T11:40:09.722Z Has data issue: false hasContentIssue false

ESTIMATING THE SIZE OF THE $(H, G)$-COINCIDENCES SET IN REPRESENTATION SPHERES

Published online by Cambridge University Press:  17 October 2022

D. DE MATTOS
Affiliation:
Departamento de Matemática, Universidade de São Paulo-USP-ICMC, Caixa Postal 668, 13560-970 São Carlos-SP, Brazil e-mail: deniseml@icmc.usp.br
E. L. DOS SANTOS
Affiliation:
Departamento de Matemática, Universidade Federal de São Carlos, Centro de Ciências Exatas e Tecnologia, CP 676, CEP 13565-905 São Carlos-SP, Brazil e-mail: edivaldo@dm.ufscar.br
T. O. SOUZA*
Affiliation:
Faculdade de Matemática, Universidade Federal de Uberlândia, Campus Santa Mônica - Bloco 1F - Sala 1F120, Av. João Naves de Avila, 2121, Uberlândia, MG, CEP 38.408-100, Brazil
*

Abstract

Let W be a real vector space and let V be an orthogonal representation of a group G such that $V^{G} = \{0\}$ (for the set of fixed points of G). Let $S(V)$ be the sphere of V and suppose that $f: S(V) \to W$ is a continuous map. We estimate the size of the $(H, G)$ -coincidences set if G is a cyclic group of prime power order $\mathbb {Z}_{p^k}$ or a p-torus $\mathbb {Z}_p^k$ .

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blagojević, P. V. M., Frick, F. and Ziegler, G., ‘Counterexamples to the Topological Tverberg Conjecture and other applications of the constraint method’, J. Eur. Math. Soc. (JEMS) 21 (2019), 21072116.CrossRefGoogle Scholar
Błaszczyk, Z., Marzantowicz, W. and Singh, M., ‘Equivariant maps between representation spheres’, Bull. Belg. Math. Soc. Simon Stevin 24(4) (2017), 621630.10.36045/bbms/1515035011CrossRefGoogle Scholar
Błaszczyk, Z., Marzantowicz, W. and Singh, M., ‘General Bourgin–Yang theorems’, Topology Appl. 249 (2018), 112126.10.1016/j.topol.2018.09.010CrossRefGoogle Scholar
Bredon, G. E., Introduction to Compact Transformation Groups, Pure and Applied Mathematics, 46 (Academic Press, New York, 1972).Google Scholar
de Mattos, D., dos Santos, E. L. and Souza, T. O., ‘ $\left(H,G\right)$ -coincidence theorems for manifolds and a topological Tverberg type theorem for any natural number $r$ ’, Bull. Belg. Math. Soc. Simon Stevin 24 (2017), 567579.10.36045/bbms/1515035007CrossRefGoogle Scholar
Gonçalves, D. L., Jaworowski, J and Pergher, P. L. Q., ‘Measuring the size of the coincidence set’, Topology Appl. 125 (2002), 465470.CrossRefGoogle Scholar
Gonçalves, D. L., Jaworowski, J., Pergher, P. L. Q. and Volovikov, A. Y., ‘Coincidences for maps of spaces with finite group actions’, Topology Appl. 145(1–3) (2004), 6168.CrossRefGoogle Scholar
Marzantowicz, W., de Mattos, D. and dos Santos, E. L., ‘Bourgin–Yang version of the Borsuk–Ulam theorem for ${\mathbb{Z}}_{p^k}$ -equivariant maps’, Algebr. Geom. Topol. 12 (2012), 22452258.CrossRefGoogle Scholar
Marzantowicz, W., de Mattos, D. and dos Santos, E. L., ‘Bourgin–Yang version of the Borsuk–Ulam theorem for $p$ -toral groups’, J. Fixed Point Theory Appl. 19 (2017), 14271437.CrossRefGoogle Scholar
Serre, J.-P., Linear Representations of Finite Groups, Graduate Texts in Mathematics, 42 (Springer, New York, 1977).CrossRefGoogle Scholar