Published online by Cambridge University Press: 20 November 2018
In a recent paper Mostert and Shields (4) showed that if a space homeomorphic to the non-negative real numbers is a certain type of topological semigroup, then the semigroup must be that of the non-negative real numbers with the usual multiplication. Somewhat earlier Faucett (2) showed that if a compact connected ordered space is a suitably restricted topological semigroup, then it must be both topologically and algebraically the same as the unit interval of real numbers with its usual multiplication.
In studying certain binary relations on topological spaces there have become known (see, in particular, Wallace (5) and the author (3)) a number of properties analogous to those possessed by topological semigroups. Because of these analogous properties between relations and semigroups the author was motivated by the general nature of the Faucett and Mostert-Shields results (that is, that the multiplication assumed turned out to be the same as the usual multiplication) to feel that certain relations on a connected ordered space should turn out to be the same as the orders whose order topologies are the topology on the space.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.