Published online by Cambridge University Press: 20 November 2018
Our aim in this paper is to study a certain class of Lie algebras which arose naturally in (4). In (4), we showed that beginning with an indecomposable symmetrizable generalized Cartan matrix (A ij) and a field Φ of characteristic zero, we could construct a Lie algebra E((A ij)) over Φ patterned on the finite-dimensional split simple Lie algebras. We were able to show that E((A ij)) is simple providing that (A ij) does not fall in the list given in (4, Table). We did not prove the converse, however.
The diagrams of the table of (4) appear in Table 2. Call the matrices that they represent Euclidean matrices and their corresponding algebras Euclidean Lie algebras. Our first objective is to show that Euclidean Lie algebras are not simple.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.