Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-25T15:32:27.361Z Has data issue: false hasContentIssue false

Properties of the Product of Two Derivations of a C*-Algebra

Published online by Cambridge University Press:  20 November 2018

Martin Mathieu*
Affiliation:
Mathematisches Institut Universität Tübingen Auf der Morgenstelle 10 D-7400 Tübingen Federal Republic of Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let δ12 be two derivations of a C*-algebra. We characterize when δ1δ2 is a derivation, a compact, or a weakly compact operator

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1989

References

1. Akemann, C A., Wright, S., Compact and weakly compact derivations of C*-algebras, Pac. J. Math. 85 (1979), 253259.Google Scholar
2. Fong, C. K., A. R. Sourour, On the operator identity ∑,AkXBk = °> Canad. J. Math. 31 (1979), 845857.+Canad.+J.+Math.+31+(1979),+845–857.>Google Scholar
3. Herstein, I. N., Rings with involution, Chicago Lectures in Mathematics, Chicago, London, 1976.Google Scholar
4. Ho, Y., A note on derivations, Bull. Inst. Math. Acad. Sinica 5 (1977), 15.Google Scholar
5. Martindale, W. S., Miers, C. R., On the iterates of derivations of prime rings, Pac. J. Math. 104 (1983), 179190.Google Scholar
6. Mathieu, M., Elementary operators on prime C*-algebras, II, Glasgow Math. J. 30 (1988), 275284.Google Scholar
7. Mathieu, M., Central bimodule homomorphisms of C*-algebras, in preparation.Google Scholar
8. Miers, C. R., J. Phillips, Algebraic inner derivations on operator algebras, Canad. J. Math. 35 (1983), 710723.Google Scholar
9. Posner, E. C., Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 10931100.Google Scholar
10. Sakai, S., C*-algebras and W*-algebras, Springer Verlag, Berlin, 1971.Google Scholar
11. Stampfli, J. G., The norm of a derivation, Pac. J. Math. 33 (1970), 737747.Google Scholar
12. Tsui, S.-K., Compact derivations on von Neumann algebras, Canad. Math. Bull. 24 (1981), 8790.Google Scholar
13. Williams, J. P., On the range of a derivation, Pac. J. Math. 38 (1971), 273279.Google Scholar
14. Ylinen, K., Weakly completely continuous elements of C*-algebras, Proc. Amer. Math. Soc. 52 (1975), 323326.Google Scholar