No CrossRef data available.
Published online by Cambridge University Press: 25 November 2024
New limit theory is provided for a wide class of sample variance and covariance functionals involving both nonstationary and stationary time series. Sample functionals of this type commonly appear in regression applications and the asymptotics are particularly relevant to estimation and inference in nonlinear nonstationary regressions that involve unit root, local unit root, or fractional processes. The limit theory is unusually general in that it covers both parametric and nonparametric regressions. Self-normalized versions of these statistics are considered that are useful in inference. Numerical evidence reveals interesting strong bimodality in the finite sample distributions of conventional self-normalized statistics similar to the bimodality that can arise in t-ratio statistics based on heavy tailed data. Bimodal behavior in these statistics is due to the presence of long memory innovations and is shown to persist for very large sample sizes even though the limit theory is Gaussian when the long memory innovations are stationary. Bimodality is shown to occur even in the limit theory when the long memory innovations are nonstationary. To address these complications, new self-normalized versions of the test statistics are introduced that deliver improved approximations that can be used for inference.
Wang acknowledges research support from the Australian Research Council (Grant No. DP170104385). Phillips acknowledges research support from the NSF (Grant No. SES 18-50860) and a Kelly Fellowship at the University of Auckland.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.