Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-10T20:40:48.178Z Has data issue: false hasContentIssue false

Breakup of particle-laden droplets in airflow

Published online by Cambridge University Press:  06 November 2023

Zhikun Xu
Affiliation:
State Key Laboratory of Engines, Tianjin University, Tianjin 300350, PR China
Tianyou Wang
Affiliation:
State Key Laboratory of Engines, Tianjin University, Tianjin 300350, PR China National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin 300350, PR China
Zhizhao Che*
Affiliation:
State Key Laboratory of Engines, Tianjin University, Tianjin 300350, PR China National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin 300350, PR China
*
Email address for correspondence: chezhizhao@tju.edu.cn

Abstract

The atomisation of a suspension containing liquid and dispersed particles is prevalent in many applications. Previous studies of droplet breakup mainly focused on homogeneous fluids, and the heterogeneous effect of particles on the breakup progress is unclear. In this study, the breakup of particle-laden droplets in airflow is investigated experimentally. Combining synchronised high-speed images from the side view and the 45$^\circ$ view, we compare the morphology of particle-laden droplets with that of homogeneous fluids in different breakup modes. The results show that the higher effective viscosity of particle-laden droplets affects the initial deformation, and the heterogeneous effect of particles appears in the later breakup stage. To evaluate the heterogeneous effect of particles quantitatively, we eliminate the effect of the higher effective viscosity of particle-laden droplets by comparing cases corresponding to the same inviscid Weber number. The quantitative comparison reveals that the heterogeneous effect of particles accelerates the fragmentation of the liquid film and promotes localised rapid piercing. A correlation length that depends on the particle diameter and the volume fraction is proposed to characterise the length scale of the concentration fluctuation under the combined effect of the initial flattening and later stretching during the droplet breakup process. Based on this correlation length, the fragment size distributions are analysed, and the scaling results agree well with the experimental data.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ade, S.S., Chandrala, L.D. & Sahu, K.C. 2023 Size distribution of a drop undergoing breakup at moderate Weber numbers. J. Fluid Mech. 959, A38.CrossRefGoogle Scholar
Aliseda, A., Hopfinger, E.J., Lasheras, J.C., Kremer, D.M., Berchielli, A. & Connolly, E.K. 2008 Atomization of viscous and non-Newtonian liquids by a coaxial, high-speed gas jet. Experiments and droplet size modeling. Intl J. Multiphase Flow 34 (2), 161175.CrossRefGoogle Scholar
Bonnoit, C., Bertrand, T., Clément, E. & Lindner, A. 2012 Accelerated drop detachment in granular suspensions. Phys. Fluids 24 (4), 043304.CrossRefGoogle Scholar
Bonnoit, C., Lanuza, J., Lindner, A. & Clement, E. 2010 Mesoscopic length scale controls the rheology of dense suspensions. Phys. Rev. Lett. 105 (10), 108302.CrossRefGoogle ScholarPubMed
Château, J., Guazzelli, E. & Lhuissier, H. 2018 Pinch-off of a viscous suspension thread. J. Fluid Mech. 852, 178198.CrossRefGoogle Scholar
Château, J. & Lhuissier, H. 2019 Breakup of a particulate suspension jet. Phys. Rev. Fluids 4 (1), 012001.CrossRefGoogle Scholar
Cohen, R.D. 1994 Effect of viscosity on drop breakup. Intl J. Multiphase Flow 20 (1), 211216.CrossRefGoogle Scholar
DeGiuli, E., During, G., Lerner, E. & Wyart, M. 2015 Unified theory of inertial granular flows and non-Brownian suspensions. Phys. Rev. E 91 (6), 062206.CrossRefGoogle ScholarPubMed
Dietzel, A. 2016 Microsystems for Pharmatechnology, vol. 1007. Springer.CrossRefGoogle Scholar
Dorschner, B., Biasiori-Poulanges, L., Schmidmayer, K., El-Rabii, H. & Colonius, T. 2020 On the formation and recurrent shedding of ligaments in droplet aerobreakup. J. Fluid Mech. 904, A20.CrossRefGoogle Scholar
Furbank, R.J. & Morris, J.F. 2004 An experimental study of particle effects on drop formation. Phys. Fluids 16 (5), 17771790.CrossRefGoogle Scholar
Furbank, R.J. & Morris, J.F. 2007 Pendant drop thread dynamics of particle-laden liquids. Intl J. Multiphase Flow 33 (4), 448468.CrossRefGoogle Scholar
Gans, A., Dressaire, E., Colnet, B., Saingier, G., Bazant, M.Z. & Sauret, A. 2019 Dip-coating of suspensions. Soft Matt. 15 (2), 252261.CrossRefGoogle ScholarPubMed
Gordillo, J.M. & Gekle, S. 2010 Generation and breakup of Worthington jets after cavity collapse. Part 2. Tip breakup of stretched jets. J. Fluid Mech. 663, 331346.CrossRefGoogle Scholar
Guazzelli, É. & Pouliquen, O. 2018 Rheology of dense granular suspensions. J. Fluid Mech. 852, P1.CrossRefGoogle Scholar
Guildenbecher, D.R., López-Rivera, C. & Sojka, P.E. 2009 Secondary atomization. Exp. Fluids 46 (3), 371402.CrossRefGoogle Scholar
Gvozdyakov, D. & Zenkov, A. 2021 Improvement of atomization characteristics of coal-water slurries. Energy 230, 120900.CrossRefGoogle Scholar
Ibrahim, E.A., Yang, H.Q. & Przekwas, A.J. 1993 Modeling of spray droplets deformation and breakup. J. Propul. Power 9 (4), 651654.CrossRefGoogle Scholar
Jackiw, I.M. & Ashgriz, N. 2021 On aerodynamic droplet breakup. J. Fluid Mech. 913, A33.CrossRefGoogle Scholar
Jackiw, I.M. & Ashgriz, N. 2022 Prediction of the droplet size distribution in aerodynamic droplet breakup. J. Fluid Mech. 940, A17.CrossRefGoogle Scholar
Jeong, D.-H., Lee, M.K.H., Thiévenaz, V., Bazant, M.Z. & Sauret, A. 2022 Dip-coating of bidisperse particulate suspensions. J. Fluid Mech. 936, A36.CrossRefGoogle Scholar
Joshi, S. & Anand, T.N.C. 2022 Droplet deformation in secondary breakup: transformation from a sphere to a disk-like structure. Intl J. Multiphase Flow 146, 103850.CrossRefGoogle Scholar
Koivuluoto, H. 2022 A review of thermally sprayed polymer coatings. J. Therm. Spray Technol. 31 (6), 17501764.CrossRefGoogle Scholar
Kulkarni, V. & Sojka, P.E. 2014 Bag breakup of low viscosity drops in the presence of a continuous air jet. Phys. Fluids 26 (7), 072103.CrossRefGoogle Scholar
Kuo, C.W. & Trujillo, M.F. 2022 A maximum entropy formalism model for the breakup of a droplet. Phys. Fluids 34 (1), 013315.CrossRefGoogle Scholar
Lefebvre, A.H. & McDonell, V.G. 2017 Atomization and Sprays. CRC Press.CrossRefGoogle Scholar
Li, Y., Xu, Z., Peng, X., Wang, T. & Che, Z. 2022 Numerical simulation of secondary breakup of shear-thinning droplets. Phys. Fluids 35, 012103.CrossRefGoogle Scholar
Liu, N., Wang, Z.G., Sun, M.B., Wang, H.B. & Wang, B. 2018 Numerical simulation of liquid droplet breakup in supersonic flows. Acta Astronaut. 145, 116130.CrossRefGoogle Scholar
Mayer, E. 1961 Theory of liquid atomization in high velocity gas streams. ARS J. 31 (12), 17831785.Google Scholar
More, R.V. & Ardekani, A.M. 2021 Unifying disparate rate-dependent rheological regimes in non-Brownian suspensions. Phys. Rev. E 103 (6), 062610.CrossRefGoogle ScholarPubMed
Morris, J.F. 2020 Shear thickening of concentrated suspensions: recent developments and relation to other phenomena. Annu. Rev. Fluid Mech. 52, 121144.CrossRefGoogle Scholar
Ness, C., Seto, R. & Mari, R. 2022 The physics of dense suspensions. Annu. Rev. Condens. Matter Phys. 13, 97117.CrossRefGoogle Scholar
Noh, K., Kim, H., Kim, S. & Song, S. 2022 Atomization characteristics of slurry fuels using a pressure swirl atomizer. J. Non-Newtonian Fluid Mech. 304, 104794.CrossRefGoogle Scholar
Obenauf, D.G. & Sojka, P.E. 2021 Theoretical deformation modeling and drop size prediction in the multimode breakup regime. Phys. Fluids 33 (9), 092113.CrossRefGoogle Scholar
Olsson, P. & Teitel, S. 2007 Critical scaling of shear viscosity at the jamming transition. Phys. Rev. Lett. 99 (17), 178001.CrossRefGoogle ScholarPubMed
O'Rourke, P.J. & Amsden, A.A. 1987 The TAB method for numerical calculation of spray droplet breakup. Rep. Los Alamos National Lab (LANL).CrossRefGoogle Scholar
Padwal, M.B., Natan, B. & Mishra, D.P. 2021 Gel propellants. Prog. Energy Combust. Sci. 83, 100885.CrossRefGoogle Scholar
Palma, S. & Lhuissier, H. 2019 Dip-coating with a particulate suspension. J. Fluid Mech. 869, R3.CrossRefGoogle Scholar
Pilch, M. & Erdman, C.A. 1987 Use of breakup time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced breakup of a liquid drop. Intl J. Multiphase Flow 13 (6), 741757.CrossRefGoogle Scholar
Qin, L.-Z., Yi, R. & Yang, L.-J. 2018 Theoretical breakup model in the planar liquid sheets exposed to high-speed gas and droplet size prediction. Intl J. Multiphase Flow 98, 158167.CrossRefGoogle Scholar
Radhakrishna, V., Shang, W.X., Yao, L.C., Chen, J. & Sojka, P.E. 2021 Experimental characterization of secondary atomization at high Ohnesorge numbers. Intl J. Multiphase Flow 138, 103591.CrossRefGoogle Scholar
Raux, P.S., Troger, A., Jop, P. & Sauret, A. 2020 Spreading and fragmentation of particle-laden liquid sheets. Phys. Rev. Fluids 5 (4), 044004.CrossRefGoogle Scholar
Rimbert, N., Castrillon Escobar, S., Meignen, R., Hadj-Achour, M. & Gradeck, M. 2020 Spheroidal droplet deformation, oscillation and breakup in uniform outer flow. J. Fluid Mech. 904, A15.CrossRefGoogle Scholar
Roche, M., Kellay, H. & Stone, H.A. 2011 Heterogeneity and the role of normal stresses during the extensional thinning of non-Brownian shear-thickening fluids. Phys. Rev. Lett. 107 (13), 134503.CrossRefGoogle ScholarPubMed
Rognon, P.G., Miller, T., Metzger, B. & Einav, I. 2014 Long-range wall perturbations in dense granular flows. J. Fluid Mech. 764, 171192.CrossRefGoogle Scholar
Rubio-Rubio, M., Mathues, W., Sevilla, A. & Clasen, C. 2018 One-dimensional modelling of the thinning of particulate suspensions near pinch-off. Intl J. Multiphase Flow 108, 202210.CrossRefGoogle Scholar
Schulkes, R.M.S.M. 1996 The contraction of liquid filaments. J. Fluid Mech. 309, 277300.CrossRefGoogle Scholar
Sharma, S., Chandra, N.K., Basu, S. & Kumar, A. 2022 Advances in droplet aerobreakup. Eur. Phys. J. Spec. Top. 232 (6), 719733.Google Scholar
Sharma, S., Singh, A.P., Rao, S.S., Kumar, A. & Basu, S. 2021 Shock induced aerobreakup of a droplet. J. Fluid Mech. 929, A27.CrossRefGoogle Scholar
Sichani, A.B. & Emami, M.D. 2015 A droplet deformation and breakup model based on virtual work principle. Phys. Fluids 27 (3), 032103.CrossRefGoogle Scholar
Stefanitsis, D., Strotos, G., Nikolopoulos, N., Kakaras, E. & Gavaises, M. 2019 Improved droplet breakup models for spray applications. Intl J. Heat Fluid Flow 76, 274286.CrossRefGoogle Scholar
Suhag, R., Kumar, N., Petkoska, A.T. & Upadhyay, A. 2020 Film formation and deposition methods of edible coating on food products: a review. Food Res. Intl 136, 109582.CrossRefGoogle ScholarPubMed
Sun, W., Chu, X., Lan, H., Huang, R., Huang, J., Xie, Y., Huang, J. & Huang, G. 2022 Current implementation status of cold spray technology: a short review. J. Therm. Spray Technol. 31 (4), 848865.CrossRefGoogle ScholarPubMed
Theofanous, T.G. 2011 Aerobreakup of Newtonian and viscoelastic liquids. Annu. Rev. Fluid Mech. 43 (1), 661690.CrossRefGoogle Scholar
Theofanous, T.G., Mitkin, V.V., Ng, C.L., Chang, C.H., Deng, X. & Sushchikh, S. 2012 The physics of aerobreakup. II. Viscous liquids. Phys. Fluids 24 (2), 022104.CrossRefGoogle Scholar
Thievenaz, V., Rajesh, S. & Sauret, A. 2021 Droplet detachment and pinch-off of bidisperse particulate suspensions. Soft Matt. 17 (25), 62026211.CrossRefGoogle ScholarPubMed
Thievenaz, V. & Sauret, A. 2022 The onset of heterogeneity in the pinch-off of suspension drops. Proc. Natl Acad. Sci. USA 119 (13), e2120893119.CrossRefGoogle ScholarPubMed
Tropea, C., Yarin, A.L. & Foss, J.F. 2007 Springer Handbook of Experimental Fluid Mechanics. Springer.CrossRefGoogle Scholar
Veron, F. 2015 Ocean spray. Annu. Rev. Fluid Mech. 47, 507538.CrossRefGoogle Scholar
Villermaux, E. 2020 Fragmentation versus cohesion. J. Fluid Mech. 898, P1.CrossRefGoogle Scholar
Villermaux, E. & Bossa, B. 2009 Single-drop fragmentation determines size distribution of raindrops. Nat. Phys. 5 (9), 697702.CrossRefGoogle Scholar
Villermaux, E., Marmottant, P. & Duplat, J. 2004 Ligament-mediated spray formation. Phys. Rev. Lett. 92 (7), 074501.CrossRefGoogle ScholarPubMed
Wang, Y. & Bourouiba, L. 2018 Unsteady sheet fragmentation: droplet sizes and speeds. J. Fluid Mech. 848, 946967.CrossRefGoogle Scholar
Wang, C., Chang, S., Wu, H., Ding, L. & Thompson, J.M. 2015 Theoretical modeling of spray drop deformation and breakup in the multimode breakup regime. Atomiz. Sprays 25 (10), 857869.CrossRefGoogle Scholar
Wang, Z.G., Hopfes, T., Giglmaier, M. & Adams, N.A. 2020 Effect of Mach number on droplet aerobreakup in shear stripping regime. Exp. Fluids 61 (9), 193.CrossRefGoogle ScholarPubMed
Wang, Z.Y., Zhao, H., Li, W.F., Xu, J.L. & Liu, H.F. 2021 Secondary breakup of shear thickening suspension drop. Phys. Fluids 33 (9), 093103.CrossRefGoogle Scholar
White, F.M. 2003 Fluid Mechanics. Mcgraw-Hill.Google Scholar
Xu, Z., Wang, T. & Che, Z. 2022 Droplet breakup in airflow with strong shear effect. J. Fluid Mech. 941, A54.CrossRefGoogle Scholar
Xu, Z., Wang, T. & Che, Z. 2023 Transitions of breakup regimes for viscous droplets in airflow. Fuel 339, 127355.CrossRefGoogle Scholar
Yang, L.-J., Gao, Y.-P., Li, J.-X. & Fu, Q.-F. 2020 Theoretical atomization model of a coaxial gas–liquid jet. Phys. Fluids 32 (12), 124108.CrossRefGoogle Scholar
Yang, W., Jia, M., Sun, K. & Wang, T.Y. 2016 Influence of density ratio on the secondary atomization of liquid droplets under highly unstable conditions. Fuel 174, 2535.CrossRefGoogle Scholar
Zhao, H., Liu, H.F., Cao, X.K., Li, W.F. & Xu, J.L. 2011 a Breakup characteristics of liquid drops in bag regime by a continuous and uniform air jet flow. Intl J. Multiphase Flow 37 (5), 530534.CrossRefGoogle Scholar
Zhao, H., Liu, H.-F., Xu, J.-L. & Li, W.-F. 2011 b Secondary breakup of coal water slurry drops. Phys. Fluids 23 (11), 113101.CrossRefGoogle Scholar

Xu et al. Supplementary Movie 1

See "Xu et al. Supplementary Movie Captions"

Download Xu et al. Supplementary Movie 1(Video)
Video 14 MB

Xu et al. Supplementary Movie 2

See "Xu et al. Supplementary Movie Captions"

Download Xu et al. Supplementary Movie 2(Video)
Video 5.8 MB

Xu et al. Supplementary Movie 3

See "Xu et al. Supplementary Movie Captions"

Download Xu et al. Supplementary Movie 3(Video)
Video 5.4 MB

Xu et al. Supplementary Movie 4

See "Xu et al. Supplementary Movie Captions"

Download Xu et al. Supplementary Movie 4(Video)
Video 8.1 MB

Xu et al. Supplementary Movie 5

See "Xu et al. Supplementary Movie Captions"

Download Xu et al. Supplementary Movie 5(Video)
Video 3.3 MB

Xu et al. Supplementary Movie 6

See "Xu et al. Supplementary Movie Captions"

Download Xu et al. Supplementary Movie 6(Video)
Video 7.3 MB
Supplementary material: PDF

Xu et al. supplementary material

Xu et al. supplementary material

Download Xu et al. supplementary material(PDF)
PDF 3.9 MB
Supplementary material: File

Xu et al. Supplementary Movie Captions

Xu et al. Supplementary Movie Captions

Download Xu et al. Supplementary Movie Captions(File)
File 12.7 KB