No CrossRef data available.
Published online by Cambridge University Press: 19 January 2015
Let $S$ be a finitely generated pro-$p$ group. Let ${\mathcal{E}}_{p^{\prime }}(S)$ be the class of profinite groups $G$ that have $S$ as a Sylow subgroup, and such that $S$ intersects nontrivially with every nontrivial normal subgroup of $G$. In this paper, we investigate whether or not there is a bound on $|G:S|$ for $G\in {\mathcal{E}}_{p^{\prime }}(S)$. For instance, we give an example where ${\mathcal{E}}_{p^{\prime }}(S)$ contains an infinite ascending chain of soluble groups, and on the other hand show that $|G:S|$ is bounded in the case where $S$ is just infinite.