Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-17T19:46:23.375Z Has data issue: false hasContentIssue false

Stress Migration in Aluminum Lines in Integrated Circuits

Published online by Cambridge University Press:  25 February 2011

H. Okabayashi*
Affiliation:
Microelectronics Research Labs., NEC Corp. 34 Miyukigaoka, Tsukuba 305, Japan
Get access

Abstract

This paper reports on two types of voiding which occur in Al lines in integrated circuits.

The first type of voiding occurs in high-temperature processes during chip fabrication, in which the thermal stress is expected to be compressive. Ultrahigh voltage electron microscopy (UHVEM) observations of the voids and voiding process show interrelations between the evolution and morphology of voids and grain-boundaries.

The other type of voiding occurs at low temperatures where highly tensile thermal stress develops in Al lines. This type of voiding occurs in accelerated life tests and actual operation. The results of accelerated life tests of intentionally oxygen-contaminated samples are described. Voids observed in low-oxygen samples are mostly large-angle-wedge-shaped and induce essentially no open failures in the early-failure period. In high-oxygen samples, crack-like voids occur, and parallel-slit-like voids also occur. These narrow voids result in high open-failure rates in the early-failure period.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 See, for a review, Okabayashi, H., Materials Sci. and Engineering, R11, 191 (1993).Google Scholar
2 Okabayashi, H., Tanikawa, A., Mori, H. and Fujita, H., Extended Abstracts of the 20th (1988 Int.) Conf. on Solid State Devices and Materials, Tokyo, 1988, p. 611.Google Scholar
3 Tanikawa, A., Okabayashi, H., Mori, H. and Fujita, H., Proc. 1990 Int. Reliability Phys. Symp., p. 209.Google Scholar
4 Okabayashi, H., Tanikawa, A., Mori, H. and Fujita, H., Ultramicroscopy, 39, 306 (1991).Google Scholar
5 Okabayashi, H., Tanikawa, A., Mori, H. and Fujita, H., in Stress-Induced Phenomena in Metallization, American Vac. Soc. Series 13, edited by Li, C.-Y., Totta, P. and Ho, P.S. (American Institute of Phys., New York, 1992), p. 174.Google Scholar
6 Okabayashi, H. and Aizawa, K., to be published in Proc. of the Second Int. Workshop on Stress-Induced Phenomena in Metallization, 1993, Austin, Texas.Google Scholar
7 Tanikawa, A., Okabayashi, H., Mori, H. and Fujita, H., unpublished data.Google Scholar
8 Shin, H., Proc. 1991 Int. VLSI Multilevel Interconnection Conf. p. 292.Google Scholar
9 Tanikawa, A., J. Electrochem. Soc., 138, 3047 (1991).CrossRefGoogle Scholar
10 Sugano, Y., Minegishi, S., Sumi, H. and Itabashi, M., Proc. 1990 Int. Reliability Phys. Symp., p. 34.Google Scholar
11 Okabayashi, H., IEEE Trans. on Electron Devices, 40, 782 (1993).Google Scholar
12 Hu, S.M., Appl. Phys. Lett. 59, 2685 (1991).Google Scholar
13 Yue, J.T., Funsten, W.P. and Taylor, R.V., Proc. 1985 Int. Reliability Phys. Symp., p. 126.Google Scholar
14 Klema, J., Pyle, R. and Domangue, E., Proc. 1984 Int. Reliability Physics Symp., p.l.Google Scholar
15 McPherson, J. W. and Dunn, C.F., J. Vac. Sci. Technol. B5, 1321 (1987).Google Scholar
16 Tezaki, A., Mineta, T., Egawa, H. and Noguchi, T., Proc. 1990 Int. Reliability Physics Symp., p. 221.Google Scholar
17 Yamaji, T., Igarashi, Y. and Nishikawa, S., Proc. 1991 Int. Reliability Physics Symp., p. 84.Google Scholar
18 Li, C-Y., Borgesen, P. and Sullivan, T.D., Appl. Phys. Lett. 59, 1464 (1991).Google Scholar
19 Lytle, S.A. and Oates, A.S., J. Appl. Phys. 71, 174 (1992).Google Scholar
20 Yost, F.G., Scr. Metall. 23, 1323 (1989).Google Scholar
21 Kato, M., Niwa, H., Yagi, H. and Tsuchikawa, H., J.Appl. Phys., 68,334 (1990).Google Scholar
22 Owada, N., Hinode, K., Horiuchi, M., Nishida, T., Nakata, K. and Mukai, K., Proc. 1985 Int. VLSI Multilevel Interconnection Conf., p. 173.Google Scholar
23 Hasunuma, M., Kaneko, H., Sawabe, A., Kawanoue, T., Kohanawa, Y., Komatsu, S. and Miyauchi, M., Technical digest of 1989 Int. Electron Devices Meeting, p. 677.Google Scholar
24 Jones, R.E. Jr., Proc. 1987 Int. Reliability Physics Symp., p. 9.Google Scholar
25 Yagi, H., Niwa, H., Hosoda, T., Inoue, M., Tsuchikawa, H. and Kato, M., Stress-Induced Phenomena in Metallization, American Vac. Soc. Series 13 (American Inst. of Phys., New York, 1992), p. 44.Google Scholar
26 Moske, M.A., Ho, P.S., Hu, C.K. and Small, M.B., Stress-Induced phenomena in Metallization, American Vac. Soc. Series 13 (American Inst. of Phys., New York, 1992), p. 195.Google Scholar
27 Tice, W. and Slusser, G., J. Vac. Sci. Technol. B6,106 (1990).Google Scholar
28 Curry, J., Fitzgibbon, G., Guan, Y., Muollo, R., Nelson, G. and Thomas, A., Proc. 1984 Int. Reliability Physics Symp., p. 6.Google Scholar
29 Katto, H. and Shimizu, S., Extended Abstracts of 1988 Electrochem. Soc. Fall Meet. 88–2(1988), p. 450.Google Scholar