Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-26T13:37:31.875Z Has data issue: false hasContentIssue false

Compactness of embeddings of function spaces on quasi-bounded domains and the distribution of eigenvalues of related elliptic operators

Published online by Cambridge University Press:  10 July 2013

Hans-Gerd Leopold
Affiliation:
Mathematisches Institut, Freidrich-Schiller Universität, Ernst Abbe Platz 1–2, 07740 Jena, Germany (hans-gerd.leopold@uni-jena.de)
Leszek Skrzypczak
Affiliation:
Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Umultowska 87, 61-614 Poznań, Poland (lskrzyp@amu.edu.pl)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We prove sufficient and necessary conditions for compactness of the Sobolev embeddings of Besov and Triebel–Lizorkin spaces defined on bounded and unbounded uniformly E-porous domains. The asymptotic behaviour of the corresponding entropy numbers is calculated. Some applications to the spectral properties of elliptic operators are described.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 2013 

References

1.Adams, R. A. and Fournier, J. J. F., Sobolev spaces (Elsevier, 2003).Google Scholar
2.Carl, B. and Stephani, I., Entropy, compactness and the approximation of operators (Cambridge University Press, 1990).CrossRefGoogle Scholar
3.Clark, C., An embedding theorem for function spaces, Pac. J. Math. 19 (1965), 243251.CrossRefGoogle Scholar
4.Clark, C. and Hewgill, D., One can hear whether a drum has finite area, Proc. Am. Math. Soc. 18 (1967), 236237.CrossRefGoogle Scholar
5.Edmunds, D. E. and Evans, W. D., Spectral theory and differential operators (Clarendon Press, Oxford, 1996).Google Scholar
6.Edmunds, D. E. and Triebel, H., Function spaces, entropy numbers, differential operators (Cambridge University Press, 1996).CrossRefGoogle Scholar
7.König, H., Operator properties of Sobolev imbeddings over unbounded domains, J. Funct. Analysis 24 (1977), 3251.CrossRefGoogle Scholar
8.König, H., Approximation numbers of Sobolev imbeddings over unbounded domains, J. Funct. Analysis 29 (1978), 7487.CrossRefGoogle Scholar
9.Kühn, T., Leopold, H.-G., Sickel, W. and Skrzypczak, L., Entropy numbers of embeddings of weighted Besov spaces, II, Proc. Edinb. Math. Soc. 49 (2006), 331359.CrossRefGoogle Scholar
10.Leopold, H.-G., Embeddings and entropy numbers for general weighted sequence space: the non-limiting case, Georgian Math. J. 7 (2000), 731743.CrossRefGoogle Scholar
11.Leopold, H.-G., Embeddings for general weighted sequence space and entropy numbers, in Function spaces, differential operators and nonlinear analysis (ed. V. Mustonen and J.Rakosnik), pp. 170186 (Institute of Mathematics of the Academy of Sciences, Prague, 2000).Google Scholar
12.Maurin, K., Abbildungen von Hilbert-Schmidtschen Typus und Ihre Anwendungen, Math. Scand. 9 (1961), 187215.CrossRefGoogle Scholar
13.Triebel, H., Fractals and spectra (Birkhäuser, 1997).CrossRefGoogle Scholar
14.Triebel, H., Function spaces and wavelet on domains (European Mathematical Society Publishing House, Zurich, 2008).CrossRefGoogle Scholar
15.Weyl, H., Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendungen auf die Theorie der Hohlraumstrahlung), Math. Annalen 71 (1912), 441479.CrossRefGoogle Scholar