No CrossRef data available.
Article contents
The place of Dirac's Equation in Five-Dimensional Riemannian Geometry
Published online by Cambridge University Press: 20 January 2009
Extract
The generalised Whittaker vector is Λμ which is prevented from vanishing by rejection of the constancy of ω, previously assumed by all writers. It is shown that (1) the null divergence of Λμ is equivalent to Dirac's equation, (2) the length of Λμ measures the probability of occurrence of the electron (3) components of Λμ are connected with the Dirac wave functions and.possible transformations of x5 are probably related to the Uncertainty Principle.
- Type
- Research Article
- Information
- Proceedings of the Edinburgh Mathematical Society , Volume 7 , Issue 4 , October 1946 , pp. 174 - 182
- Copyright
- Copyright © Edinburgh Mathematical Society 1946
References
page 174 note 1Whittaker, E. T., Proe. Royal Soc. (A) (158) (1937), 38–46.CrossRefGoogle Scholar
page 174 note 2Flint, H. T., Phil. Mag., 7 (29) (1940), 417–433 (429).CrossRefGoogle ScholarFlint, H. T., Proc. Royal Soc. (A) (150) (1935), 421–441.CrossRefGoogle Scholar
page 174 note 3Einstein, A., Berliner Sitzungberichte (1928), 217–221, 224–227.Google ScholarEinstein, A., Berliner Sitzungberichte (1929), 2–7, 156–159.Google ScholarEinstein, A., Berliner Sitzungberichte (1930), 18–23, 401–402.Google ScholarEinstein., A., Mayer, W., Berliner Sitzungberichte (1930), 257–265.Google ScholarWeitzenbock, R., Berliner Sitzungberichte (1928), 466–474.Google ScholarFlint, H. T., Proc. Royal Soc. (A) (121) (1928), 676–681.CrossRefGoogle Scholar
page 175 note 1Kaluza, Th., Berliner Sitzungberichte (1921), 966–972.Google Scholar
page 175 note 2Klein, O., Zeischrift für Phys. (37) (1926), 895–906.CrossRefGoogle Scholar
page 175 note 3Tetrode, H., Zeitschrift für Phys. (50) (1928), 336–346.CrossRefGoogle Scholar
page 175 note 4Schroedinger, E., Berliner Sitzungberichte (11) (1932), 105–128 (109).Google Scholar
page 177 note 1Laporte, and Uhlenbeck, , Phys. Rev. 2nd Series (37) (2) (1931), 1380–1397.Google Scholar
page 178 note 1Flint, H. T., Phil. Mag. (7) (29) (1940), 417–433 (429).CrossRefGoogle Scholar