Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-17T18:17:14.979Z Has data issue: false hasContentIssue false

Can Fullerene Analogues be the Carriers of the Diffuse Interstellar Bands?

Published online by Cambridge University Press:  21 February 2014

J. Cami*
Affiliation:
Department of Physics and Astronomy, University of Western Ontario, London, ON N6A 3K7, Canada email: jcami@uwo.ca SETI Institute, 189 Bernardo Avenue, Suite 100, Mountain View, CA 94043, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Fullerenes and their derivatives are amongst the most stable carbonaceous species known and have therefore been proposed as ideal candidates to carry some of the diffuse interstellar bands (DIBs). Evidence for these species in space first came from a few DIBs that have been tentatively identified with electronic transitions of C60+; in recent years, infrared observations have furthermore revealed fullerenes in a variety of circumstellar and interstellar environments. With the presence of the fullerene family in space established, we review what is known about cosmic fullerenes and their derivatives and what role they could play as potential DIB carriers.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Bernard-Salas, J., Cami, J., Peeters, E., et al. 2012, ApJ 757, 41CrossRefGoogle Scholar
Berné, O., Mulas, G., & Joblin, C. 2013, A&A 550, L4Google Scholar
Berné, O. & Tielens, A. G. G. M. 2012, Proceedings of the National Academy of Science 109, 401Google Scholar
Boersma, C., Rubin, R. H., & Allamandola, L. J. 2012, ApJ 753, 168Google Scholar
Cami, J., Bernard-Salas, J., Peeters, E., & Malek, S. E. 2010, Science 329, 1180Google Scholar
Chuvilin, A., Kaiser, U., Bichoutskaia, E., Besley, N. A., & Khlobystov, A. N. 2010, Nat. Chem. 2, 450CrossRefGoogle Scholar
Clayton, G. C., Kelly, D. M., Lacy, J. H., et al. 1995, AJ 109, 2096CrossRefGoogle Scholar
de Graauw, T., Haser, L. N., Beintema, D., et al. 1996, A&A 315, L49Google Scholar
de Vries, M. S., Reihs, K., Wendt, H. R., et al. 1993, Geochim. Cosmochim. Acta 57, 933Google Scholar
Dunk, P. W., Kaiser, N. K., Hendrickson, C., et al. 2012, Nat. Commun. 3, 855Google Scholar
Ehrenfreund, P. & Foing, B. H. 1997, Advances in Space Research 19, 1033Google Scholar
Foing, B. H. & Ehrenfreund, P. 1994, Nat 369, 296Google Scholar
Foing, B. H. & Ehrenfreund, P. 1997, A&A 317, L59Google Scholar
Friedman, S. D., York, D. G., McCall, B. J., et al. 2011, ApJ 727, 33Google Scholar
García-Hernández, D. A., & Díaz-Luis, J. J. 2013, A&A 550, L6Google Scholar
García-Hernández, D. A., Iglesias-Groth, S., Acosta-Pulido, J. A., et al. 2011a, ApJ Lett. 737, L30+CrossRefGoogle Scholar
García-Hernández, D. A., KameswaraRao, N. Rao, N., & Lambert, D. L. 2011b, ApJ 729, 126Google Scholar
García-Hernández, D. A., Manchado, A., García-Lario, P., et al. 2010, ApJ Lett. 724, L39Google Scholar
Gielen, C., Cami, J., Bouwman, J., Peeters, E., & Min, M. 2011, A&A 536, A54Google Scholar
Herbig, G. H. 1995, ARA&A 33, 19Google Scholar
Herbig, G. H. 2000, ApJ 542, 334Google Scholar
Hobbs, L. M., York, D. G., Thorburn, J. A., et al. 2009, ApJ 705, 32Google Scholar
Houck, J. R., Roellig, T. L., van Cleve, J., et al. 2004, ApJS 154, 18CrossRefGoogle Scholar
Irle, S., Zheng, G., Wang, Z., & Morokuma, K. 2006, J. Phys. Chem. 110, 14531Google Scholar
Jäger, C., Huisken, F., Mutschke, H., Jansa, I. L., & Henning, T. 2009, ApJ 696, 706Google Scholar
Kessler, M. F., Steinz, J. A., Anderegg, M. E., et al. 1996, A&A 315, L27Google Scholar
Kroto, H. W. 1987, Nat 329, 529Google Scholar
Kroto, H. W., Heath, J. R., Obrien, S. C., Curl, R. F., & Smalley, R. E. 1985, Nat 318, 162Google Scholar
Kroto, H. W. & Jura, M. 1992, A&A 263, 275Google Scholar
Leach, S. 1992, Chemical Physics 160, 451Google Scholar
Micelotta, E. R., Jones, A. P., Cami, J., et al. 2012, ApJ 761, 35Google Scholar
Misawa, T., Gandhi, P., Hida, A., Tamagawa, T., & Yamaguchi, T. 2009, ApJ 700, 1988Google Scholar
Moutou, C., Sellgren, K., Verstraete, L., & Léger, A. 1999, A&A 347, 949Google Scholar
Otsuka, M., Kemper, F., Cami, J., Peeters, E., & Bernard-Salas, J. 2013a, MNRAS acceptedGoogle Scholar
Otsuka, M., Kemper, F., Hyung, S., et al. 2013b, ApJ 764, 77CrossRefGoogle Scholar
Peeters, E., Tielens, A. G. G. M., Allamandola, L. J., & Wolfire, M. G. 2012, ApJ 747, 44CrossRefGoogle Scholar
Roberts, K. R. G., Smith, K. T., & Sarre, P. J. 2012, ArXiv e-printsGoogle Scholar
Rubin, R. H., Simpson, J. P., O'Dell, C. R., et al. 2011, MNRAS 410, 1320CrossRefGoogle Scholar
Sassara, A., Zerza, G., Chergui, M., & Leach, S. 2001 135, 263Google Scholar
Scott, A., Duley, W. W., & Pinho, G. P. 1997, ApJ Lett. 489, L193+Google Scholar
Sellgren, K., Uchida, K. I., & Werner, M. W. 2007, ApJ 659, 1338Google Scholar
Sellgren, K., Werner, M. W., Ingalls, J. G., et al. 2010, ApJ Lett. 722, L54Google Scholar
Snow, T. P. & Seab, C. G. 1989, A&A 213, 291Google Scholar
Somerville, W. B. & Bellis, J. G. 1989, MNRAS 240, 41PGoogle Scholar
Wang, X. K., Lin, X. W., Mesleh, M., et al. 1995, Journal of Materials Research 10, 1977CrossRefGoogle Scholar
Werner, M. W., Roellig, T. L., Low, F. J., et al. 2004, ApJS 154, 1Google Scholar
Zhang, Y. & Kwok, S. 2011, ApJ 730, 126Google Scholar