Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-21T11:51:36.943Z Has data issue: false hasContentIssue false

Primordial Nucleosynthesis After WMAP

Published online by Cambridge University Press:  09 March 2010

Gary Steigman*
Affiliation:
Departments of Physics and Astronomy, Center for Cosmology and Astro-Particle Physics, The Ohio State University, 191 West Woodruff Avenue, Columbus, OH 432120, USA email: steigman@mps.ohio-state.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

During its early evolution, the hot, dense Universe provided a laboratory for probing fundamental physics at high energies. By studying the relics from those early epochs, such as the light elements synthesized during primordial nucleosynthesis when the Universe was only a few minutes old, and the relic, cosmic microwave photons, last scattered when the protons, alphas, and electrons (re)combined some 400 thousand years later, the evolution of the Universe may be used to test the standard models of cosmology and particle physics and to set constraints on proposals of physics beyond these standard models.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Aoki, W. et al. (2009), ApJ, 698, 1803.CrossRefGoogle Scholar
Asplund, M., et al. 2006, ApJ, 644, 229.CrossRefGoogle Scholar
Bania, T. M., Rood, R. T., & Balser, D. S. 2002, Nature, 415, 54.CrossRefGoogle Scholar
Boesgaard, A. M., Stephens, A., & Deliyannis, C. P. 2005, ApJ, 633, 398.CrossRefGoogle Scholar
Dunkley, J., et al. 2009, ApJS, 180, 306.CrossRefGoogle Scholar
Geiss, J. & Gloeckler, J. G. 1998, Space Sci. Rev., 84, 239.CrossRefGoogle Scholar
Iben, I. Jr., 1967, ApJ, 147, 624.CrossRefGoogle Scholar
Izotov, Y., Thuan, T. X., & Stasinska, G. 2007, ApJ, 662, 15.CrossRefGoogle Scholar
Komatsu, E., et al. 2009, ApJS, 180, 330.CrossRefGoogle Scholar
Kneller, J. P. & Steigman, G. 2004, New J. Phys., 6, 117.CrossRefGoogle Scholar
Lind, K., et al. 2009, A&A, In Press, (arXiv:0906.2876).Google Scholar
Pettini, M., Zych, B. J., Murphy, M. T., Lewis, A., & Steidel, C.C. 2008, MNRAS, 391, 1499.CrossRefGoogle Scholar
Rood, R. T. 1972, ApJ, 177, 681.CrossRefGoogle Scholar
Rood, R. T., Steigman, G., & Tinsley, B. M. 1999, ApJL, 207, L57.CrossRefGoogle Scholar
Sanchez, A. G., et al. 2009, MNRAS, 400, 1643.CrossRefGoogle Scholar
Simha, V. & Steigman, G. 2008, JCAP, 06, 016.CrossRefGoogle Scholar
Spergel, D. N., et al. 2007, ApJS, 170, 377.CrossRefGoogle Scholar
Steigman, G. 2006, Int. J. Mod. Phys. E, 15, 1.CrossRefGoogle Scholar
Steigman, G. 2006, JCAP, 10, 016.CrossRefGoogle Scholar
Steigman, G. 2007, Ann. Rev. Nucl. Part. Sci., 57, 463.CrossRefGoogle Scholar