Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-23T03:07:28.607Z Has data issue: false hasContentIssue false

Towards physics-based helioseismic inversions of subsurface sunspot structure

Published online by Cambridge University Press:  26 August 2011

D. C. Braun
Affiliation:
NorthWest Research Assoc, CoRA Div, 3380 Mitchell Ln, Boulder, CO, USA email: dbraun@cora.nwra.com, aaronb@cora.nwra.com, ash@cora.nwra.com
A. C. Birch
Affiliation:
NorthWest Research Assoc, CoRA Div, 3380 Mitchell Ln, Boulder, CO, USA email: dbraun@cora.nwra.com, aaronb@cora.nwra.com, ash@cora.nwra.com
A. D. Crouch
Affiliation:
NorthWest Research Assoc, CoRA Div, 3380 Mitchell Ln, Boulder, CO, USA email: dbraun@cora.nwra.com, aaronb@cora.nwra.com, ash@cora.nwra.com
M. Rempel
Affiliation:
NCAR, HAO Div, 3080 Center Green Dr, Boulder, CO, USA email: rempel@ucar.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Numerical computations of wave propagation through sunspot-like magnetic field structures are critical to developing and testing methods to deduce the subsurface structure of sunspots and active regions. We show that helioseismic analysis applied to the MHD sunspot simulations of Rempel and collaborators, as well as to translation-invariant models of umbral-like fields, yield wave travel-time measurements in qualitative agreement with those obtained in real sunspots. However, standard inversion methods applied to these data fail to reproduce the true wave-speed structure beneath the surface of the model. Inversion methods which incorporate direct effects of the magnetic field, including mode conversion, may be required.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Birch, A. C., Braun, D. C., Hanasoge, S. M., & Cameron, R. 2009, Solar Phys., 254, 17CrossRefGoogle Scholar
Braun, D. C. & Birch, A. C. 2006, Astrophys. J., 647, L187CrossRefGoogle Scholar
Braun, D. C. & Birch, A. C. 2008, Solar Phys., 251, 267CrossRefGoogle Scholar
Cameron, R., Gizon, L., Schunker, H., & Pietarila, A. 2010, 268, 293–308Google Scholar
Couvidat, S., Birch, A. C., & Kosovichev, A. G. 2006, Astrophys. J., 640, 516CrossRefGoogle Scholar
Couvidat, S., Gizon, L., Birch, A. C., Larsen, R. M., & Kosovichev, A. G. 2005, ApJS, 158, 217CrossRefGoogle Scholar
Couvidat, S., & Rajaguru, S. P. 2007, Astrophys. J., 661, 558CrossRefGoogle Scholar
Crouch, A. D., Birch, A. C., Braun, D. C., & Clack, C. T. M. 2010, these proceedingsGoogle Scholar
Crouch, A. D, Cally, P. S., Charbonneau, P., Braun, D. C., & Desjardins, M. 2005, Mon. Not. Roy. Astron. Soc., 363, 1188CrossRefGoogle Scholar
Gizon, L. & Birch, A. C. 2004, Astrophys. J., 614, 472CrossRefGoogle Scholar
Gizon, L. & 14 coauthors 2009, Space Sci. Revs, 144, 249CrossRefGoogle Scholar
Gizon, L., Birch, A. C., & Spruit, H. C. 2010, ARAA, in press (arXiv:1001.0930)Google Scholar
Kosovichev, A. G., & Duvall, T. L. Jr., 1997, SCORe'96: Solar Convection and Oscillations and their Relationship, Astrophysics and Space Science Library 225, 241Google Scholar
Kosovichev, A. G., Duvall, T. L. Jr., & Scherrer, P. H. 2000, Solar Phys., 192, 159CrossRefGoogle Scholar
Moradi, H., Hanasoge, S. M., & Cally, P. S. 2009, Astrophys. J., 690, L72CrossRefGoogle Scholar
Moradi, H. & 21 coauthors 2010, Solar Phys, in press (arXiv:0912.4982)Google Scholar
Rempel, M., Schüssler, M., & Knólker, M. 2009, Astrophys. J., 691, 640CrossRefGoogle Scholar
Vógler, A., Shelyag, S., Schüssler, M., Cattaneo, F., Emonet, T., & Linde, T. 2005, Astron. Astrophys, 429, 335CrossRefGoogle Scholar