Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-04T00:27:37.340Z Has data issue: false hasContentIssue false

Trajectory tracking of mobile robots in dynamic environments—a linear algebra approach

Published online by Cambridge University Press:  26 February 2009

Andrés Rosales*
Affiliation:
Instituto de Automática (INAUT), Universidad Nacional de San Juan, Av. Libertador San Martín 1109 (oeste) – J5400ARL, San Juan, Argentina.
Gustavo Scaglia
Affiliation:
Instituto de Automática (INAUT), Universidad Nacional de San Juan, Av. Libertador San Martín 1109 (oeste) – J5400ARL, San Juan, Argentina.
Vicente Mut
Affiliation:
Instituto de Automática (INAUT), Universidad Nacional de San Juan, Av. Libertador San Martín 1109 (oeste) – J5400ARL, San Juan, Argentina.
Fernando di Sciascio
Affiliation:
Instituto de Automática (INAUT), Universidad Nacional de San Juan, Av. Libertador San Martín 1109 (oeste) – J5400ARL, San Juan, Argentina.
*
*Corresponding author. E-mail: arosales@inaut.unsj.edu.ar

Summary

A new approach for navigation of mobile robots in dynamic environments by using Linear Algebra Theory, Numerical Methods, and a modification of the Force Field Method is presented in this paper. The controller design is based on the dynamic model of a unicycle-like nonholonomic mobile robot. Previous studies very often ignore the dynamics of mobile robots and suffer from algorithmic singularities. Simulation and experimentation results confirm the feasibility and the effectiveness of the proposed controller and the advantages of the dynamic model use. By using this new strategy, the robot is able to adapt its behavior at the available knowing level and it can navigate in a safe way, minimizing the tracking error.

Type
Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Agarwal, R., Difference Equations and Inequalities, Theory, Methods, and Applications (Marcel Dekker, Inc., New York, 2000).CrossRefGoogle Scholar
2.Borenstein, J. and Koren, Y., “The vector field histogram-fast obstacle avoidance for mobile robots,” IEEE Trans. Rob. Automat. 7, 278288 (1991).CrossRefGoogle Scholar
3.Carelli, R., Santos-Victor, J., Roberti, F. and Tosetti, S., “Direct visual tracking control of remote cellular robots,” Rob. Autonom. Syst. 54, 805814 (2006).CrossRefGoogle Scholar
4.Chung, J. H., Yi, B. J., Kim, W. K. and Lee, H., “The Dynamic Modeling and Analysis for an Omnidirectional Mobile Robot with Three Caster Wheels,” Proceedings of IEEE International Conference on Robotics and Automation, Taipei, Taiwan (2003) pp. 521527.Google Scholar
5.Connolly, C., Burns, J. and Weiss, R., “Path planning using Laplace's equation,” Proceedings of IEEE International Conference on Robotics and Automation, Cincinnati, Ohio (1990) pp. 21022106.CrossRefGoogle Scholar
6.De la Cruz, C. and Carelli, R., “Dynamic model based formation control and obstacle avoidance of multi-robot systems,” Robotica 26, 345356 (2008) (Cambridge).CrossRefGoogle Scholar
7.Del Rio, F., Jiménez, G., Sevillano, J., Amaya, C. and Balcells, A., “Error Adaptive Tracking for Mobile Robots,” Proceedings of 28th Annual Conference on IEEE Industrial Electronics Society, Sevilla, Spain (2002) pp. 1–42415–2420.Google Scholar
8.Do, K. and Pan, J., “Global output-feedback path tracking of unicycle-type mobile robots,” Rob. Comput.-Integr. Manuf. 22, 166179 (2006).CrossRefGoogle Scholar
9.Dong, W. and Guo, Y., “Dynamic Tracking Control of Uncertain Mobile Robots,” IEEE/RSJ International Conference on Intelligent Robots and Systems, Alberta, Canada (2005) pp. 27742779.Google Scholar
10.Fierro, R. and Lewis, F. L., “Control of a nonholonomic mobile robot using neural networks,” IEEE Trans. Neural Network 9, 589600 (1998).CrossRefGoogle ScholarPubMed
11.Fierro, R. and Lewis, F. L., “Control of a nonholonomic mobile robot: Backstepping kinematics into dynamics,” J. Rob. Syst. 4, 149163 (1997).3.0.CO;2-R>CrossRefGoogle Scholar
12.Fox, D., Burgard, W. and Thrun, S., “The dynamic window approach to collision avoidance,” IEEE Rob. Automat. Mag. 4, 2333 (1997).CrossRefGoogle Scholar
13.Fraichard, T. and Asama, H., “Inevitable Collision States: A Step Towards Safer Robots?,” IEEE International Conference on Intelligent Robots and Systems, Las Vegas, Nevada, IROS (2003).Google Scholar
14.Fraichard, T. and Scheuer, A., “Car-Like Robots and Moving Obstacles,” IEEE International Conference on Robotics and Automation, San Diego, California, ICRA (1994).Google Scholar
15.Fukao, T., Nakagawa, H. and Adachi, N., “Adaptive tracking control of a nonholonomic mobile robot,” IEEE Trans. Rob. Automat. 16, 609615 (2000).CrossRefGoogle Scholar
16.Ge, S. and Cui, Y., “Dynamic motion planning for mobile robots using potential field method,” Autonom. Rob. 13, 207222 (2002).CrossRefGoogle Scholar
17.Hwang, C. L. and Chang, L. J., “Trajectory tracking and obstacle avoidance of car-like mobile robots in an intelligent space using mixed H 2/H decentralized control,” Trans. Mechatron. 12, 345352 (2007).CrossRefGoogle Scholar
18.Hwang, C. L., Han, S. Y. and Chang, L. J., “Trajectory Tracking of Car-Like Mobile Robots using Mixed H 2/H Decentralized Variable Structure Control,” International Conference on Mechatronics, Chongqing, China (2005) pp. 520525.Google Scholar
19.Jang, E., Jung, S. and Hsia, T., “Collision Avoidance and Control of a Mobile Robot Using a Hybrid Force Control Algorithm”, 30th Annual Conference on IEEE Industrial Electronics Society, Busan, Korea (2004) pp. 413418.Google Scholar
20.Jung, S., Jang, E. and Hsia, T., “Collision Avoidance of a Mobile Robot Using Intelligent Hybrid Force Control Technique,” Proceedings of IEEE International Conference on Robotics and Automation, Barcelona, Spain (2005) pp. 44184423.Google Scholar
21.Kanayama, Y., Kimura, Y., Miyazaki, F. and Noguchi, T., “A Stable Tracking Control Method for an Autonomous Mobile Robot,” Proceedings of IEEE International Conference on Robotics and Automation, Tsukuba, Japan (1990) pp. 384389.CrossRefGoogle Scholar
22.Kim, K., “Receding horizon tracking control for constrained linear continuous time-varying systems,” IEEE Proc. Control Theory Appl. 150, 534538 (2003).CrossRefGoogle Scholar
23.Klančar, G. and Škrjank, I., “Tracking-error model-based predictive control for mobile robots in real time,” Rob. Autonom. Syst. 55, 460469 (2007).CrossRefGoogle Scholar
24.Latombe, J. C., Robot Motion Planning, vol. 0124 (Kluwer, Dordrecht, The Netherlands, 1991).CrossRefGoogle Scholar
25.Lee, S. and Park, J. H., “Virtual Trajectory in Tracking Control of Mobile Robots,” Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronic, Kobe, Japan, AIM (2003).Google Scholar
26.Liu, S., Zhang, H., Yang, S. X. and Yu, J., “Dynamic Control of a Mobile Robot Using an Adaptive Neurodynamics and Sliding Mode Strategy,” Proceedings of 5th Congress Intelligent Control and Automation, Hangzhou, China (2004) pp. 50075011.Google Scholar
27.Liu, Z. Y., Jing, R. H., Ding, X. Q. and Li, J. H., “Trajectory Tracking Control of Wheeled Mobile Robots Based on the Artificial Potential Field,” Fourth International Conference on Natural Computation, Jinan, China (2008) pp. 382387.CrossRefGoogle Scholar
28.Masoud, A., “Using hybrid vector-harmonic potential fields for multi-robot, multi-target navigation in a stationary environment,” Proc. IEEE Int. Conf. Rob. Automat. 4, 35643571 (1996).CrossRefGoogle Scholar
29.Myers, T. and Vlacic, L., “Autonomous driving in a time-varying environment,” IEEE Adv. Rob. Soc. Impacts 1, 5358 (2005).Google Scholar
30.Nak, Y. K. and Simmons, R., “The Lane-Curvature Method for Local Obstacle Avoidance,” IEEE International Conference on Robotics and Automation, Geiranger, Norway, ICRA (1998).Google Scholar
31.Normey-Rico, J., Alcalá, I., Gomez-Ortega, J. and Camacho, E., “Mobile robot path tracking using PID controller,” Control Eng. Pract. 9, 12091214 (2001).CrossRefGoogle Scholar
32.Normey-Rico, J., Gomez-Ortega, J. and Camacho, E., “A Smith-predictor-based generalized predictive controller for mobile robot path-tracking,” Control Eng. Pract. 7, 729740 (1999).CrossRefGoogle Scholar
33.Ojeda, L. and Borenstein, J., “Reduction of Odometry Errors in Over-constrained Mobile Robots,” Proceedings of the UGV Technology Conference at the SPIE AeroSense Symposium, Orlando, Florida (2003) pp. 2125.Google Scholar
34.Owen, E. and Montano, L., “A Robocentric Motion Planner for Dynamic Environments Using the Velocity Space,” IEEE International Conference on Intelligent Robots and Systems, Beijing, China, IROS (2006).Google Scholar
35.Rosales, A., Scaglia, G., Mut, V. and di Sciascio, F., “Controller Designed by Means of Numeric Methods for a Benchmark Problem: RTAC (Rotational Translational Actuator),” IEEE – Electronics, Robotics and Automotive Mechanics Conference, Cuernavaca, Mexico (2006) pp. 97104.CrossRefGoogle Scholar
36.Scaglia, G., Mut, V., Rosales, A. and Quintero, O., “Tracking Control of a Mobile Robot using Linear Interpolation,” International Conference on Integrated Modeling and Analysis in Applied Control and Automation – IMAACA, Buenos Aires, Argentina (2007).Google Scholar
37.Scaglia, G., Quintero, O., Mut, V. and di Sciascio, F., Numerical Methods Based Controller Design for Mobile Robots (IFAC World Congress, 2008).CrossRefGoogle Scholar
38.Scaglia, G., Quintero, O., Mut, V. and di Sciascio, F., Numerical Methods Based Controller design for Mobile Robots (Robotica – Cambridge University Press, Cambridge, UK, 2008).CrossRefGoogle Scholar
39.Seder, M., Macek, K. and Petrovic, I., “An Integrated Approach to Real Time Mobile Robot Control in Partially Known Indoor Environments,” Proceedings of 31st Annual Conference of the IEEE Industrial Electronics Society, Raleigh, North Carolina (2005).Google Scholar
40.Shuli, S., “Designing approach on trajectory-tracking control of mobile robot,” Rob. Comput.-Integr. Manuf. 21, 8185 (2005).Google Scholar
41.Simmons, R., “The Curvature–Velocity Method for Local Obstacle Avoidance,” IEEE International Conference on Robotics and Automation, Geiranger, Norway, ICRA (1996).Google Scholar
42.Stachniss, C. and Burgard, W., “An integrated approach to goal directed obstacle avoidance under dynamic constraints for dynamic environments,” IEEE International Conference on Intelligent Robots and Systems, EPFL, Switzerland, IROS (2002).Google Scholar
43.Strang, G., Linear Algebra and Its Applications, 3rd ed. (MIT Academic Press, New York, 1980).Google Scholar
44.Tian, J., Gao, M. and Lu, E., “Dynamic Collision Avoidance Path Planning for Mobile Robot Based on Multi-sensor Data Fusion by Support Vector Machine,” International Conference on Mechatronics and Automation, Harbin, China, ICMA07 (2007) pp. 27792783.Google Scholar
45.Tsai, P. S., Wang, L. S., Chang, F. R. and Wu, T. F., “Systematic Backstepping Design for B-spline Trajectory Tracking Control of the Mobile Robot in Hierarchical Model,” International Conference on Networking, Sensing and Control, Taipei, Taiwan (2004) pp. 713718.Google Scholar
46.Ulrich, I. and Borenstein, J., “VFH*: Local obstacle avoidance with look ahead verification,” Proc. IEEE Int. Conf. Rob. Automat. 3, 25052511 (2000).Google Scholar
47.Ulrich, I. and Borenstein, J., “VFH+: Reliable obstacle avoidance for fast mobile robots,” Proc. IEEE Int. Conf. Rob. Automat. 2, 15721577 (1998).CrossRefGoogle Scholar
48.Vougioukas, S., “Reactive Trajectory Tracking for Mobile Robots based on Non Linear Model Predictive Control,” International Conference on Robotics and Automation, Torun, Poland (2007) pp. 30743079.Google Scholar
49.Wang, D., Liu, D. and Dissanayake, G., “A Variable Speed Force Field Method for Multi-Robot Collaboration,” Proceedings of International Conference on Intelligent Robots and Systems, China (2006) pp.26972702.Google Scholar
50.Wang, T. Y. and Tsai, C. C., “Adaptive Trajectory Tracking Control of a Wheeled Mobile Robot via Lyapunov Techniques,” Annual Conference of IEEE Industrial Electronics Society, Busan, Korea (2004) pp. 389394.Google Scholar
51.Yang, J. M. and Kim, J. H., “Sliding mode control for trajectory of nonholonomic wheeled mobile robots,”, IEEE Trans. Rob. Automat. 15, 578587 (1999).CrossRefGoogle Scholar
52.Yang, X., He, K., Guo, M. and Zhang, B., “An Intelligent Predictive Control Approach to Path Tracking Problem of Autonomous Mobile Robot,” IEEE International Conference on Robotics and Automation, Beijing, China (1998) pp. 33013306.Google Scholar
53.Zhang, Huai-Xiang, Dai, Guo-Jun and Zeng, Hong, “A Trajectory Tracking Control Method for Nonholonomic Mobile Robots,” International Conference on Wavelet Analysis and Pattern Recognition, Beijing, China (2007) pp. 711.Google Scholar