No CrossRef data available.
Article contents
Construction of Roman roads toward neuroeconomics
Published online by Cambridge University Press: 30 September 2021
Abstract
Neuroeconomics is still “under construction.” To be a leading discipline, it needs firm ecological rationale and neurobiological bases. “Vigor” supplies this infrastructure through the mathematics of the foraging theory and system-neuroscience evidence on utility and motor control. It will prepare us for the future neuroeconomics, if studied appropriately in the light of evolution.
- Type
- Open Peer Commentary
- Information
- Copyright
- Copyright © The Author(s), 2021. Published by Cambridge University Press
References
Amita, H., Kawamori, A., & Matsushima, T. (2010). Social influences of competition on impulsive choices in domestic chicks. Biology Letters, 6, 183–186. https://doi.org/10.1098/rsbl.2009.0748CrossRefGoogle ScholarPubMed
Amita, H., & Matsushima, T. (2011). Instantaneous and cumulative influences of competition on impulsive choices in domestic chicks. Frontiers in Neuroscience, 5, 101. https://doi.org/doi : 10.3389/fnins.2011.00101CrossRefGoogle ScholarPubMed
Charnov, E. L. (1976). Optimal foraging, the marginal value theorem. Theoretical Population Biology, 9, 129–136.CrossRefGoogle ScholarPubMed
Cohen, J. Y., Amoroso, M. W., & Uchida, N. (2015). Serotonergic neurons signal reward and punishment on multiple timescales. eLife, 4, e06346. https://doi.org/10.7554/eLife.06346CrossRefGoogle ScholarPubMed
Cowie, R. J. (1977). Optimal foraging in great tits (Parus major). Nature, 268, 137–139. https://doi.org/10.1038/268137a0CrossRefGoogle Scholar
Glimcher, P. W. (2003). Decisions, uncertainty, and the brain, the science of neuroeconomics. MIT Press.CrossRefGoogle Scholar
Hayden, B. Y., Pearson, J. M., & Platt, M. L. (2011). Neuronal basis of sequential foraging decisions in a patchy environment. Nature Neuroscience, 14, 933–939. https://doi.org/10.1038/nn.2856CrossRefGoogle Scholar
Kacelnik, A. (1984). Central place foraging in starlings (Sturnus vulgaris). I. Patch residence time. Journal of Animal Ecology, 53, 283–299. https://doi.org/10.2307/4357CrossRefGoogle Scholar
Kasuya, E. (1982). Central place water collection in a Japanese paper wasp, Polistes Chinensis antennalis. Animal Behaviour, 30, 1010–1014. https://doi.org/10.1016/S0003-3472(82)80189-9CrossRefGoogle Scholar
Lottem, E., Banerjee, D., Vertechi, P., Sarra, D., Lohuis, M. O., & Mainen, Z. F. (2018). Activation of serotonin neurons promotes active persistence in a probabilistic foraging task. Nature Communications, 9, 1000. https://doi.org/10.1038/s41467-018-03438-yCrossRefGoogle Scholar
Matsunami, S., Ogura, Y., Amita, H., Izumi, T., Yoshioka, M., & Matsushima, T. (2012). Behavioral and pharmacological effects of fluvoxamine on decision-making in food patches and the inter-temporal choices of domestic chicks. Behavioural Brain Research, 233, 577–586. http://dx.doi.org/10.1016/j.bbr.2012.05.045CrossRefGoogle ScholarPubMed
Matsushima, T., & Grillner, S. (1992). Neural mechanisms of intersegmental coordination in lamprey – Local excitability changes modify the phase coupling along the spinal cord. Journal of Neurophysiology, 67, 373–388. https://doi.org/10.1152/jn.1992.67.2.373CrossRefGoogle ScholarPubMed
Ogura, Y., Amita, H., & Matsushima, T. (2018). Ecological validity of impulsive choice: Consequences of profitability-based short-sighted evaluation in the producer-scrounger game. Frontiers in Applied Mathematics and Statistics, 4, 49. http://dx.doi.org/10.3389/fams.2018.00049CrossRefGoogle Scholar
Ogura, Y., Izumi, T., Yoshioka, M., & Matsushima, T. (2015). Dissociation of the neural substrates of foraging effort and its social facilitation in the domestic chick. Behavioural Brain Research, 294, 162–176. https://doi.org/10.1016/j.bbr.2015.07.052CrossRefGoogle ScholarPubMed
Ogura, Y., Masamoto, T., & Kameda, T. (2020). Mere presence of co-eater automatically shifts foraging tactics toward “Fast and Easy” food in humans. Royal Society Open Science, 7, 200044. http://dx.doi.org/10.1098/rsos.200044CrossRefGoogle ScholarPubMed
Ogura, Y., & Matsushima, T. (2011). Social facilitation revisited: Increase in foraging efforts and synchronization of running in domestic chicks. Frontiers in Neuroscience, 5, 91. https://doi.org/10.3389/fnins.2011.00091CrossRefGoogle ScholarPubMed
Olkowicz, S., Kocourek, M., Lučan, R. K., Porteš, M., Fitch, W. T., Herculano-Houzel, S., & Němec, P. (2016). Birds have primate-like numbers of neurons in the forebrain. Proceedings of the National Academy of Sciences of the United States of America, 113, 7255–7260. https://doi.org/10.1073/pnas.1517131113CrossRefGoogle ScholarPubMed
Pirolli, P. (2007). Information foraging theory, adaptive interaction with information. Oxford University Press.CrossRefGoogle Scholar
Shanahan, M., Bingman, V. P., Shimizu, T., Wild, M., & Güntürkün, O. (2013). Large-scale network organization in the avian forebrain: A connectivity matrix and theoretical analysis. Frontiers in Computational Neuroscience, 7, 89. https://doi.org/10.3389/fncom.2013.00089CrossRefGoogle ScholarPubMed
Suryanarayana, S. M., Robertson, B., Wallén, P., & Grillner, S. (2017). The lamprey pallium provides a blueprint of the mammalian layered cortex. Current Biology, 27, 3264–3277. https://doi.org/10.1016/j.cub.2017.09.034CrossRefGoogle ScholarPubMed
Zajonc, R. B. (1965). Social facilitation. Science (New York, N.Y.), 149, 269–274. https://doi.org/10.1126/science.149.3681.269CrossRefGoogle ScholarPubMed
Target article
Précis of Vigor: Neuroeconomics of Movement Control
Related commentaries (14)
A role of serotonin and the insula in vigor: Tracking environmental and physiological resources
Construction of Roman roads toward neuroeconomics
Costs and benefits of communicating vigor
Foundational assumption reasonable but uncertain
How not to answer interdisciplinary “Why?” questions
Movement vigor: Frameworks, exceptions, and nomenclature
Moving fast and seeing slow? The visual consequences of vigorous movement
Quantum decision corrections for the neuroeconomics of irrational movement control and goal attainment
Reducing behavioral dimensions to study brain–environment interactions
Thoughts on vigor in the motor and cognitive domains
Time and the decider
Vigor and aspiration levels in neuroeconomics
Vigor of reactive postural responses is set from feedback and feedforward processes
Why we don't move: The importance of somatic maintenance and resting
Author response
Movement control, decision-making, and the building of Roman roads to link them