Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-rvbq7 Total loading time: 0 Render date: 2024-07-15T22:31:18.789Z Has data issue: false hasContentIssue false

30 - Bowerbird Innovation and Problem-Solving

from Part VI - Innovation and Problem-Solving

Published online by Cambridge University Press:  01 July 2021

Allison B. Kaufman
Affiliation:
University of Connecticut
Josep Call
Affiliation:
University of St Andrews, Scotland
James C. Kaufman
Affiliation:
University of Connecticut
Get access

Summary

Behavioral innovation, the ability to invent new behaviors and/or use preexisting behaviors in a new context to respond to a novel situation, can be critical to an individual’s survival (i.e., natural selection). Less studied is how innovation can be critical for mating success (i.e., sexual selection). Bowerbirds are an excellent system to study the latter, given the likely importance of sexual selection to their diversification. Bowerbirds are a family of birds that show remarkable diversity in their unique construction of courtship arenas out of sticks and use of various colored objects as decorations. In this chapter, I give background on what bowerbirds are and present inadvertent evidence from experimental manipulations of their off-body sexual displays that bowerbirds are extremely flexible in their behavior. The bulk of the chapter reviews experiments in which novel problem-solving tasks were presented to bowerbirds and then their performance was compared to their mating success. I conclude by suggesting that an important future research goal should be to study how innovativeness affects the speciation process via sexual selection.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arden, R., Gottfredson, L. S., & Miller, G. (2009). Does a fitness factor contribute to the association between intelligence and health outcomes? Evidence from medical abnormality counts among 3654 US Veterans. Intelligence, 37(6), 581591. https://doi.org/10.1016/j.intell.2009.03.008CrossRefGoogle Scholar
Audet, J.-N. & Lefebvre, L. (2017). What’s flexible in behavioral flexibility? Behavioral Ecology, 28(4), 943947. https://doi.org/10.1093/beheco/arx007CrossRefGoogle Scholar
Baldwin, J. M. (1896). A new factor in evolutionThe American Naturalist30, 441451, 536–553. https://doi.org/10.1086/276408.CrossRefGoogle Scholar
Bensky, M. K. & Bell, A. M. (2020). Predictors of individual variation in reversal learning performance in three-spined sticklebacks. Animal Cognition, 23925938. https://doi.org/10.1007/s10071-020-01399-8CrossRefGoogle ScholarPubMed
Boogert, N. J., Anderson, R. C., Peters, S., & Searcy, W. A. (2011). Song repertoire size in male song sparrows correlates with detour reaching, but not with other cognitive measures. Animal Behaviour, 81(6), 12091216. https://doi.org/10.1016/j.anbehav.2011.03.004Google Scholar
Borgia, G. (1985a). Bower quality, number of decorations and mating success of male satin bowerbirds (Ptilonorhynchus violaceus): An experimental analysis. Animal Behaviour, 33(1), 266271. https://doi.org/10.1016/S0003-3472(85)80140-8Google Scholar
Borgia, G. (1985b). Bower destruction and sexual competition in the satin bowerbird (Ptilonorhynchus violaceus). Behavioral Ecology and Sociobiology, 18(2), 91100. https://doi.org/10.1007/BF00299037CrossRefGoogle Scholar
Borgia, G. (1993). The cost of display in the non-resource-based mating system of the satin bowerbird. The American Naturalist, 141(5), 729743. https://doi.org/10.1086/285502CrossRefGoogle ScholarPubMed
Borgia, G. (1995). Why do bowerbirds build bowers? American Scientist, 83(6), 542547.Google Scholar
Borgia, G. & Gore, M. A. (1986). Feather stealing in the satin bowerbird (Ptilonorhynchus violaceus): Male competition and the quality of display. Animal Behaviour, 34(3), 727738. https://doi.org/10.1016/S0003-3472(86)80056-2CrossRefGoogle Scholar
Borgia, G., Kaatz, I. M., & Condit, R. (1987). Flower choice and bower decoration in the satin bowerbird Ptilonorhynchus violaceus: A test of hypotheses for the evolution of male display. Animal Behaviour, 35(4), 11291139. https://doi.org/10.1016/S0003-3472(87)80169-0CrossRefGoogle Scholar
Borgia, G. & MuellerU. (1992). Bower destruction, decoration stealing and female choice in the spotted bowerbird Chlamydera maculataEmu, 92(1), 1118https://doi.org/10.1071/MU9920011Google Scholar
Borgia, G. & Presgraves, D. C. (1998). Coevolution of elaborated male display traits in the spotted bowerbird: An experimental test of the threat reduction hypothesis. Animal Behaviour, 56(5), 11211128. https://doi.org/10.1006/anbe.1998.0908CrossRefGoogle ScholarPubMed
Borgia, G. & Keagy, J. (2006). An inverse relationship between decoration and food colour preferences in satin bowerbirds does not support the sensory drive hypothesis. Animal Behaviour, 72(5), 11251133. https://doi.org/10.1016/j.anbehav.2006.03.015Google Scholar
Borgia, G. & Keagy, J. (2015). Sexual Selection and Cognitive Ability: What Bowerbirds Can Teach Us. In Irschick, D., Briffa, M., & Podos, J. (Eds.), Animal Signaling and Function: An Integrative Approach. Hoboken, NJ: John Wiley and Sons.Google Scholar
Boul, K. E., Funk, W. C., Darst, C. R., Cannatella, D. C., & Ryan, M. J. (2007). Sexual selection drives speciation in an Amazonian frog. Proceedings of the Royal Society of London B: Biological Sciences, 274(1608), 399406. https://doi.org/10.1098/rspb.2006.3736Google Scholar
Bravery, B. D. & Goldizen, A. W. (2007). Male satin bowerbirds (Ptilonorhynchus violaceus) compensate for sexual signal loss by enhancing multiple display features. Naturwissenschaften, 94(6), 473476. https://doi.org/10.1007/s00114-006-0211-1CrossRefGoogle ScholarPubMed
Cole, E. F., Morand-Ferron, J., Hinks, A. E., & Quinn, J. L. (2012). Cognitive ability influences reproductive life history variation in the wild. Current Biology, 22(19), 18081812. https://doi.org/10.1016/j.cub.2012.07.051Google Scholar
Coleman, S. W. (2005). Variable Female Preferences and the Evolution of Complex Male Displays in the Satin Bowerbird (Ptilonorhynchus violaceus). [Doctoral dissertation, University of Maryland, College Park]. Digital Repository at the University of Maryland.Google Scholar
Coleman, S. W., Patricelli, G. L., & Borgia, G. (2004). Variable female preferences drive complex male displays. Nature, 428, 742745. https://doi.org/10.1038/nature02419CrossRefGoogle ScholarPubMed
Collis, K. & Borgia, G. (1993). The costs of male display and delayed plumage maturation in the satin bowerbird (Ptilonorhynchus violaceus). Ethology, 94(1), 5971. https://doi.org/10.1111/j.1439-0310.1993.tb00547.xCrossRefGoogle Scholar
Croston, R., Kozlovsky, D. Y., Branch, C. L., Parchman, T. L., Bridge, E. S., & Pravosudov, V. V. (2016). Individual variation in spatial memory performance in wild mountain chickadees from different elevations. Animal Behaviour, 111(1), 225234. https://doi.org/10.1016/j.anbehav.2015.10.015Google Scholar
Darwin, C. (1871). The Descent of Man and Selection in Relation to Sex. London: John Murray.Google Scholar
Day, L. B., Westcott, D. A., & Olster, D. H. (2005). Evolution of bower complexity and cerebellum size in bowerbirds. Brain, Behavior, and Evolution, 66(1), 6272. https://doi.org/10.1159/000085048CrossRefGoogle ScholarPubMed
Diamond, J. (1986). Animal art: Variation in bower decorating style among male bowerbirds Ambylornis inornatus. Proceedings of the National Academy of Sciences of the USA, 83(9), 30423046. https://doi.org/10.1073/pnas.83.9.3042CrossRefGoogle ScholarPubMed
Diamond, J. (1987). Bower building and decoration by the bowerbird Amblyornis inornatus. Ethology, 74(3), 177204. https://doi.org/10.1111/j.1439-0310.1987.tb00932.xCrossRefGoogle Scholar
Doerr, N. R. (2010). Decoration supplementation and male-male competition in the great bowerbird (Ptilonorhynchus nuchalis): A test of the social control hypothesisBehavioral Ecology and Sociobiology, 64(11), 18871896. https://doi.org/10.1007/s00265-010-1000-6Google Scholar
Doerr, N. R. & Endler, J. A. (2015). Illusions vary because of the types of decorations at bowers, not male skill at arranging them, in great bowerbirds. Animal Behaviour, 99(1), 7382. https://doi.org/10.1016/j.anbehav.2014.10.022CrossRefGoogle Scholar
Endler, J. A., Endler, L. C., & Doerr, N. R. (2010). Great bowerbirds create theaters with forced perspective when seen by their audience. Current Biology. 20(18), 16791684. https://doi.org/10.1016/j.cub.2010.08.033CrossRefGoogle ScholarPubMed
Erwin, D. H. (2015). Novelty and innovation in the history of life. Current Biology, 25(19), R930R940. https://doi.org/10.1016/j.cub.2015.08.019CrossRefGoogle ScholarPubMed
Federspiel, I. G., Garland, A., Guez, D., Bugnyar, T., Healy, S. D., Güntürkün, O., & Griffin, A. (2017). Adjusting foraging strategies: A comparison of rural and urban common mynas (Acridotheres tristis). Animal Cognition, 20(1), 6574. https://doi.org/10.1007/s10071-016-1045-7Google Scholar
Griffin, A. S., Guez, D., Lermite, F., & Patience, M. (2013). Tracking changing environments: Innovators are fast, but not flexible learners. PLoS ONE, 8(12), e84907. https://doi.org/10.1371/journal.pone.0084907Google Scholar
Griffin, A. S. & Guez, D. (2014). Innovation and problem solving: A review of common mechanisms. Behavioral Processes, 109(Pt B), 121134. https://doi.org/10.1016/j.beproc.2014.08.027Google Scholar
Hicks, R. E., Larned, A., & Borgia, G. (2013). Bower paint removal leads to reduced female visits, suggesting bower paint functions as a chemical signal. Animal Behaviour, 85(6), 12091215. https://doi.org/10.1016/j.anbehav.2013.03.007CrossRefGoogle Scholar
Hoekstra, H. E., Hoekstra, J. M., Berrigan, D., Vignieri, S. N., Hoang, A., Hill, C. E., Beerli, P., & Kingsolver, J. P. (2001). Strength and tempo of directional selection in the wild. Proceedings of the National Academy of Sciences of the U.S.A., 98(16), 91579160. https://doi.org/10.1073/pnas.161281098CrossRefGoogle ScholarPubMed
Isden, J., Panayi, C., Dingle, C., & Madden, J. (2013). Performance in cognitive and problem-solving tasks in male spotted bowerbirds does not correlate with mating success. Animal Behaviour, 86(4), 829838. https://doi.org/10.1016/j.anbehav.2013.07.024Google Scholar
Keagy, J., Savard, J.-F., & Borgia, G. (2009). Male satin bowerbird problem-solving ability predicts mating success. Animal Behaviour, 78(4), 809817. https://doi.org/10.1016/j.anbehav.2009.07.011CrossRefGoogle Scholar
Keagy, J., Savard, J.-F., & Borgia, G. (2011). Complex relationship between multiple measures of cognitive ability and male mating success in satin bowerbirds, Ptilonorhynchus violaceus. Animal Behaviour, 81(5), 10631070. https://doi.org/10.1016/j.anbehav.2011.02.018Google Scholar
Keagy, J., Lettieri, L., & Boughman, J. W. (2016). Male competition fitness landscapes predict both forward and reverse speciation. Ecology Letters, 19(1), 7180. https://doi.org/10.1111/ele.12544CrossRefGoogle ScholarPubMed
Kingsolver, J. G., Hoekstra, H. E., Hoekstra, J. M., Berrigan, D., Vignieri, S. N., Hill, C. E., Hoang, A., Gibert, P., & Beerli, P. (2001). The strength of phenotypic selection in natural populations. The American Naturalist, 157(3), 245261. https://doi.org/10.1086/319193Google Scholar
Kingsolver, J. G., Hoekstra, H. E., Hoekstra, J. M., Berrigan, D., Vignieri, S. N., Hill, C. E., Hoang, A., Gibert, P., & Beerli, P. (2008). Data from: The strength of phenotypic selection in natural populations. Dryad Digital Repository. [Data set]. https://doi.org/10.5061/dryad.166Google Scholar
Kraaijeveld, K., Kraaijeveld-Smit, F. J. L., & Maan, M. E. (2011). Sexual selection and speciation: The comparative evidence revisited. Biological Reviews, 86(3), 367377. https://doi.org/10.1086/319193.CrossRefGoogle ScholarPubMed
Kusmierski, R., Borgia, B., Uy, A. & Crozier, R. (1997). Labile evolution of display traits in bowerbirds indicates reduced effects of phylogenetic constraint. Proceedings of the Royal Society of London B: Biological Sciences, 264(1380), 307313. https://doi.org/10.1098/rspb.1997.0044Google Scholar
Lande, R. & Arnold, S. J. (1983). The measurement of selection on correlated characters. Evolution, 37(6), 12101226. https://doi.org/10.1111/j.1558-5646.1983.tb00236.x.CrossRefGoogle ScholarPubMed
Larned, A. F. (2012). The effect of sunlight on decoration placement and mating success in male satin bowerbirds. [Master’s thesis, University of Maryland, College Park]. Digital Repository at the University of Maryland.Google Scholar
Lefebvre, L., Reader, S. M., & Sol, D. (2004). Brains, innovations and evolution in birds and primates. Brain, Behavior, and Evolution, 63(4), 233246. https://doi.org/10.1159/000076784CrossRefGoogle ScholarPubMed
Loffredo, C. A. & Borgia, G. (1986). Male courtship vocalizations as cues for mate choice in the satin bowerbird (Ptilonorhynchus violaceus). Auk, 103(1) 189195.Google Scholar
Madden, J. (2001). Sex, bowers and brains. Proceedings of the Royal Society of London B: Biological Sciences, 268(1469), 833838. https://doi.org/10.1098/rspb.2000.1425CrossRefGoogle ScholarPubMed
Madden, J. R. (2002). Bower decorations attract females but provoke other male spotted bowerbirds: Bower owners resolve this trade-off. Proceedings of the Royal Society of London B: Biological Sciences, 269(1498), 13471351. https://doi.org/10.1098/rspb.2002.1988Google Scholar
Madden, J. R. (2003). Bower decorations are good predictors of mating success in the spotted bowerbird. Behavioral Ecology and Sociobiology, 53(5), 269277. https://doi.org/10.1007/s00265-003-0583-6Google Scholar
Madden, J. R. (2006). Interpopulation differences exhibited by spotted bowerbirds Chlamydera maculata across a suite of male traits and female preferences. Ibis, 148(3), 425435. https://doi.org/10.1111/j.1474-919X.2006.00540.xGoogle Scholar
Madden, J. R. (2008). Do bowerbirds exhibit culture? Animal Cognition, 11(1), 1-12. https://doi.org/10.1007/s10071-007-0092-5Google Scholar
Madden, J. R. & Balmford, A. (2004). Spotted bowerbirds Chlamydera maculata do not prefer rare or costly bower decorations. Behavioral Ecology and Sociobiology, 55(6) 589595. https://doi.org/10.1007/s00265-003-0737-6CrossRefGoogle Scholar
Marshall, A. J. (1954). Bower-birds. Biological Reviews, 29, 1-45https://doi.org/10.1111/j.1469-185X.1954.tb01395.xGoogle Scholar
Marshall, A. J. (1956). Bowerbirds. Scientific American, 194(6), 4853.Google Scholar
Martinez, J., Keagy, J., Wurst, B., Fetzner, W., & Boughman, J. W. (2016). The relative role of genes and environment on spatial learning ability in recently diverged stickleback fish. Evolutionary Ecology Research, 17(4565581.Google Scholar
Mendelson, T. C. (2003). Sexual isolation evolves faster than hybrid inviability in a diverse and sexually dimorphic genus of fish (Percidae: Etheostoma). Evolution, 57(2), 317327. https://doi.org/10.1111/j.0014-3820.2003.tb00266.xGoogle Scholar
M’Gonigle, L. K., Mazzucco, R., Otto, S. P., & Dieckmann, U. (2012). Sexual selection enables long-term coexistence despite ecological equivalence. Nature, 484(7395), 506509. https://doi.org/10.1038/nature10971CrossRefGoogle ScholarPubMed
Morand-Ferron, J., Hamblin, S., Cole, E. F., Aplin, L. M., & Quinn, J. L. (2015). Taking the operant paradigm into the field: Associative learning in wild Great Tits. PLoS ONE, 10(8), e0133821. https://doi.org/10.1371/journal.pone.0133821Google Scholar
Morand-Ferron, J., Cole, E. F., & Quinn, J. L. (2016). Studying the evolutionary ecology of cognition in the wild: A review of practical and conceptual challenges. Biological Reviews of the Cambridge Philosophical Society, 91(2), 367389. https://doi.org/10.1111/brv.12174.Google Scholar
Morrison-Scott, T. C. S. (1937). Experiments on colour-vision in the satin bower-bird (Ptilonorhynchus violaceus), with other observations. Proceedings of the Zoological Society of London, Series A, 107(1), 4149. https://doi.org/10.1111/j.1469-7998.1937.tb08498.xGoogle Scholar
Nicolakakis, N., Sol, D., & Lefebvre, L. (2003). Behavioural flexibility predicts species richness in birds, but not extinction risk. Animal Behaviour, 65(3) 445452. https://doi.org/10.1006/anbe.2003.2085CrossRefGoogle Scholar
Odling-Smee, L. C., Boughman, J. W., & Braithwaite, V. A. (2008). Sympatric species of threespine stickleback differ in their performance in a spatial learning task. Behavioral Ecology and Sociobiology, 62(12), 19351945. https://doi.org/10.1007/s00265-008-0625-1Google Scholar
Overington, S. E., Cauchard, L., Côté, K.-A., & Lefebvre, L. (2011). Innovative foraging behaviour in birds: What characterizes an innovator? Behavioural Processes, 87(3), 274285. https://doi.org/10.1016/j.beproc.2011.06.002.Google Scholar
Patricelli, G. L., Coleman, S. W., & Borgia, G. (2002). Male displays adjusted to female’s response. Nature, 415(6869), 279280https://doi.org/10.1038/415279aGoogle Scholar
Prokosch, M. D., Yeo, R. A., & Miller, G. F. (2005). Intelligence tests with higher g-loadings show higher correlations with body symmetry: Evidence for a general fitness factor mediated by developmental stability. Intelligence. 33(2), 203-213. https://doi.org/10.1016/j.intell.2004.07.007Google Scholar
Reynolds, S. M., Dryer, K., Bollback, J., Uy, J. A. C., Patricelli, G. L., Robson, T., Borgia, G., & Braun, M. (2007). Behavioral paternity predicts genetic paternity in Satin Bowerbirds (Ptilonorhynchus violaceus), a species with a non-resource-based mating system. Auk, 124(3), 857867. https://doi.org/10.1093/auk/124.3.857Google Scholar
Robson, T. E., Goldizen, A. W. & Green, D. J. (2005). The multiple signals assessed by female satin bowerbirds: Could they be used to narrow down females’ choices of mates? Biology Letters, 1(3), 264e267. https://doi.org/10.1098/rsbl.2005.0325Google Scholar
Roth, G. & Dicke, U. (2005). Evolution of the brain and intelligence. Trends in Cognitive Sciences, 9(5), 250257, https://doi.org/10.1016/j.tics.2005.03.005.Google Scholar
Rowe, C. & Healy, S. D. (2014). Measuring variation in cognition. Behavioral Ecology, 25(6) 12871292. https://doi.org/10.1093/beheco/aru090CrossRefGoogle Scholar
Seehausen, O., Terai, Y., Magalhaes, I. S., Carleton, K. L., Mrosso, H. D. J., Miyagi, R., van der Sluijs, I., Schneider, M. V., Mann, M. E., Tachida, H., Imai, H., & Okada, N. (2008). Speciation through sensory drive in cichlid fish. Nature, 455(7213) 620626. https://doi.org/10.1038/nature07285Google Scholar
Sol, D. & Lefebvre, L. (2000). Behavioural flexibility predicts invasion success in birds introduced to New Zealand. Oikos, 90(3), 599605. https://doi.org/10.1034/j.1600-0706.2000.900317.xGoogle Scholar
Sol, D., Timmermans, S., & Lefebvre, L. (2002). Behavioural flexibility and invasion success in birds. Animal Behaviour, 63(3), 495502. https://doi.org/10.1006/anbe.2001.1953Google Scholar
Sol, D., Duncan, R. P., Blackburn, T. M., Cassey, P., & Lefebvre, L. (2005). Big brains, enhanced cognition, and response of birds to novel environments. Proceedings of the National Academy of Sciences of the USA, 102(15), 54605465. https://doi.org/10.1073/pnas.0408145102Google Scholar
Tebbich, S., Sterelny, K., & Teschke, I. (2010). The tale of the finch: Adaptive radiation and behavioural flexibility. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 365(1543), 10991109. https://doi.org/10.1098/rstb.2009.0291Google Scholar
Thornton, A. & Samson, J. (2012). Innovative problem solving in wild meerkats. Animal Behaviour, 83(6), 14591468. https://doi.org/10.1016/j.anbehav.2012.03.018CrossRefGoogle Scholar
Thornton, A., Isden, J., & Madden, J. R. (2014). Toward wild psychometrics: linking individual cognitive differences to fitness. Behavioral Ecology, 25(6), 12991301. https://doi.org/10.1093/beheco/aru095Google Scholar
Uy, J. A. C. & Borgia, G. (2000). Sexual selection drives rapid divergence in bowerbird display traits. Evolution, 54(1), 273278. https://doi.org/10.1111/j.0014-3820.2000.tb00027.xGoogle Scholar
Uy, J. A. C., Patricelli, G. L., & Borgia, G. (2000). Dynamic mate-searching tactic allows female satin bowerbirds Ptilonorhynchus violaceus to reduce searching. Proceedings of the Royal Society of London B: Biological Sciences. 267(1440), 251256. https://doi.org/10.1098/rspb.2000.0994Google Scholar
Uy, J. A. C., Patricelli, G. L., & Borgia, G. (2001a). Loss of preferred mates forces female satin bowerbirds (Ptilonorhynchus violaceus) to increase mate searching. Proceedings of the Royal Society of London B: Biological Sciences, 268(1467), 633638. https://doi.org/10.1098/rspb.2000.1413Google Scholar
Uy, J. A. C., Patricelli, G. L., & Borgia, G. (2001b). Complex mate searching in the satin bowerbird Ptilonorhynchus violaceus. The American Naturalist, 158(5), 530542. https://doi.org/10.1086/323118.Google Scholar
Wojcieszek, J. M., Nicholls, J. A., &Goldizen, A. W. (2007). Stealing behavior and the maintenance of a visual display in the satin bowerbird. Behavioral Ecology, 18(4), 689695. https://doi.org/10.1093/beheco/arm031Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×