Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-19T10:12:58.643Z Has data issue: false hasContentIssue false

Chapter 4 - Puberty and Affective Mental Illness in Males

from Section 1 - The Developmental Context and Developmental Disorders

Published online by Cambridge University Press:  10 March 2021

David Castle
Affiliation:
University of Melbourne
David Coghill
Affiliation:
University of Melbourne
Get access

Summary

Puberty is the major neuroendocrine cataclysm in the postnatal life of males. But it succeeds another, similar one during prenatal life, and it is impossible to understand the phenomenon of puberty fully without considering the earlier event. While testosterone is a major contributor to both events, it is not the only one. Thus, this chapter first addresses the impact of testosterone on the developing brain, before a broader consideration of puberty in males and its associations with perturbations of identity and of anxiety and mood.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, G. M. 2014. Postnatal testosterone concentrations and male social development. Front Endocrinol (Lausanne), 5, 15.Google Scholar
Altemus, M., Sarvaiya, N., and Neill Epperson, C. 2014. Sex differences in anxiety and depression clinical perspectives. Front Neuroendocrinol, 35, 320–30.Google Scholar
Archer, J. 2019. The reality and evolutionary significance of human psychological sex differences. Biol Rev Camb Philos Soc, 94, 13811415.Google Scholar
Arnett, J. J. 1999. Adolescent storm and stress, reconsidered. Am Psychol, 54, 317–26.CrossRefGoogle ScholarPubMed
Bauer, M., Andreassen, O. A., Geddes, J. R., Vedel Kessing, L., Lewitzka, U., Schulze, T. G., and Vieta, E. 2018. Areas of uncertainties and unmet needs in bipolar disorders: clinical and research perspectives. Lancet Psychiatry, 5, 930–9.Google Scholar
Becker, J. B. 2009. Sexual differentiation of motivation: a novel mechanism? Horm Behav, 55, 646–54.Google Scholar
Berenbaum, S. A. and Beltz, A. M. 2011. Sexual differentiation of human behavior: effects of prenatal and pubertal organizational hormones. Front Neuroendocrinol, 32, 183200.Google Scholar
Berenbaum, S. A., Beltz, A. M., and Corley, R. 2015. The importance of puberty for adolescent development: conceptualization and measurement. Adv Child Dev Behav, 48, 5392.Google Scholar
Bezdickova, M., Molikova, R., Bebarova, L., and Kolar, Z. 2007. Distribution of nuclear receptors for steroid hormones in the human brain: a preliminary study. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub, 151, 6971.Google Scholar
Birmaher, B. and Rozel, J. S. 2003. Unipolar depression – a lifespan perpsetive: ‘the school age child’. In: Goodyer, I. M. (ed.) Unipolar Depression: A Lifespan Perspective. Oxford: Oxford University Press.Google Scholar
Bramen, J. E., Hranilovich, J. A., Dahl, R. E., Chen, J., Rosso, C., Forbes, E. E., Dinov, I. D., Worthman, C. M., and Sowell, E. R. 2012. Sex matters during adolescence: testosterone-related cortical thickness maturation differs between boys and girls. PLoS One, 7, e33850.Google Scholar
Cameron, H. A. and Gould, E. 1994. Adult neurogenesis is regulated by adrenal steroids in the dentate gyrus. Neuroscience, 61, 203–9.Google Scholar
Caspi, A., Sugden, K., Moffitt, T. E., Taylor, A., Craig, I. W., Harrington, H., Mcclay, J., Mill, J., Martin, J., Braithwaite, A., and Poulton, R. 2003. Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science, 301, 386–9.Google Scholar
Clarkson, T., Eaton, N. R., Nelson, E. E., Fox, N. A., Leibenluft, E., Pine, D. S., Heckelman, A. C., Sequeira, S. L., and Jarcho, J. M. 2019. Early childhood social reticence and neural response to peers in preadolescence predict social anxiety symptoms in midadolescence. Depress Anxiety, 36, 676–89.Google Scholar
Cohen-Kettenis, P. T. 2005. Gender change in 46,XY persons with 5alpha-reductase-2 deficiency and 17beta-hydroxysteroid dehydrogenase-3 deficiency. Arch Sex Behav, 34, 399410.Google Scholar
Cortes, M. E., Carrera, B., Rioseco, H., Pablo Del Rio, J., and Vigil, P. 2015. The role of kisspeptin in the onset of puberty and in the ovulatory mechanism: a mini-review. J Pediatr Adolesc Gynecol, 28, 286–91.Google Scholar
Costa, R., Dunsford, M., Skagerberg, E., Holt, V., Carmichael, P., and Colizzi, M. 2015. Psychological support, puberty suppression, and psychosocial functioning in adolescents with gender dysphoria. J Sex Med, 12, 2206–14.Google Scholar
Cowen, P. J. and Browning, M. 2015. What has serotonin to do with depression? World Psychiatry, 14, 158–60.Google Scholar
Dalley, J. W. and Roiser, J. P. 2012. Dopamine, serotonin and impulsivity. Neuroscience, 215, 4258.Google Scholar
Duarte-Guterman, P., Lieblich, S., Wainwright, S. R., Chow, C., Chaiton, J., Watson, N. V., and Galea, L. A. M. 2019. Androgens enhance adult hippocampal neurogenesis in males but not females in an age-dependent manner. Endocrinology, 160(9), 2128–36.Google Scholar
Duffy, A., Jones, S., Goodday, S., and Bentall, R. 2015. Candidate risks indicators for bipolar disorder: early intervention opportunities in high-risk youth. Int J Neuropsychopharmacol, 19.Google Scholar
Duque Ede, A. and Munhoz, C. D. 2016. The pro-inflammatory effects of glucocorticoids in the brain. Front Endocrinol (Lausanne), 7, 78.Google Scholar
Durwood, L., Mclaughlin, K. A., and Olson, K. R. 2017. Mental health and self-worth in socially transitioned transgender youth. J Am Acad Child Adolesc Psychiatry, 56, 116–23 e2.Google Scholar
Farooqi, N. A. I., Scotti, M., Yu, A., Lew, J., Monnier, P., Botteron, K. N., Campbell, B. C., Booij, L., Herba, C. M., Seguin, J. R., Castellanos-Ryan, N., Mccracken, J. T., and Nguyen, T. V. 2019. Sex-specific contribution of DHEA-cortisol ratio to prefrontal-hippocampal structural development, cognitive abilities and personality traits. J Neuroendocrinol, 31, e12682.Google Scholar
Fawcett, J. W., Oohashi, T., and Pizzorusso, T. The role of perineurional nets and perinodal extracellular matrix in neuronal function. Nat Rev Neurosci. 2019 (8):451465.Google Scholar
Forbes, E. E. and Dahl, R. E. 2010. Pubertal development and behavior: hormonal activation of social and motivational tendencies. Brain Cogn, 72, 6672.Google Scholar
Foulkes, L. and Blakemore, S. J. 2018. Studying individual differences in human adolescent brain development. Nat Neurosci, 21, 315–23.Google Scholar
Garg, E., Chen, L., Nguyen, T. T. T., Pokhvisneva, I., Chen, L. M., Unternaehrer, E., Macisaac, J. L., Mcewen, L. M., Mah, S. M., Gaudreau, H., Levitan, R., Moss, E., Sokolowski, M. B., Kennedy, J. L., Steiner, M. S., Meaney, M. J., Holbrook, J. D., Silveira, P. P., Karnani, N., Kobor, M. S., O’Donnell, K. J., and Mavan Study, T. 2018. The early care environment and DNA methylome variation in childhood. Dev Psychopathol, 30, 891903.CrossRefGoogle ScholarPubMed
Goddings, A. L., Burnett Heyes, S., Bird, G., Viner, R. M., and Blakemore, S. J. 2012. The relationship between puberty and social emotion processing. Dev Sci, 15, 801–11.Google Scholar
Goodyer, I. M. 2003. Unipolar Depression: A Lifespan Perspective. Oxford: Oxford University Press.Google Scholar
Goodyer, I. M., Croudace, T., Dudbridge, F., Ban, M., and Herbert, J. 2010. Polymorphisms in BDNF (Val66Met) and 5-HTTLPR, morning cortisol and subsequent depression in at-risk adolescents. Br J Psychiatry, 197, 365–71.Google Scholar
Goodyer, I. M., Herbert, J., and Tamplin, A. 2003. Psychoendocrine antecedents of persistent first-episode major depression in adolescents: a community-based longitudinal enquiry. Psychol Med, 33, 601–10.Google Scholar
Goodyer, I. M. and Wilkinson, P. O. 2019. Practitioner review: therapeutics of unipolar major depressions in adolescents. J Child Psychol Psychiatry, 60, 232–43.Google Scholar
Gottlieb, B., Beitel, L. K., Nadarajah, A., Paliouras, M., and Trifiro, M. 2012. The androgen receptor gene mutations database: 2011 update. Hum Mutat.CrossRefGoogle Scholar
Halligan, S. L., Herbert, J., Goodyer, I. M., and Murray, L. 2004. Exposure to postnatal depression predicts elevated cortisol in adolescent offspring. Biol Psychiatry, 55, 376–81.Google Scholar
Harrington, R. 2003. Adolescence. In: Goodyer, I. M. (ed.) Unipolar Depression: A Lifespan Perspective. Oxford: Oxford University Press.Google Scholar
Heim, C. and Binder, E. B. 2012. Current research trends in early life stress and depression: review of human studies on sensitive periods, gene–environment interactions, and epigenetics. Exp Neurol, 233, 102–11.Google Scholar
Herbert, J. 2017. Testosterone: The Molecule Behind Power, Sex and the Will to Win. Oxford: Oxford University Press.Google Scholar
Herbert, J. and Lucassen, P. J. 2016. Depression as a risk factor for Alzheimer’s disease: genes, steroids, cytokines and neurogenesis – what do we need to know? Front Neuroendocrinol, 41, 153–71.Google Scholar
Herting, M. M., Gautam, P., Spielberg, J. M., Dahl, R. E., and Sowell, E. R. 2015. A longitudinal study: changes in cortical thickness and surface area during pubertal maturation. PLoS One, 10, e0119774.Google Scholar
Hines, M. 2006. Brain Gender. Oxford: Oxford University Press.Google Scholar
Hines, M. 2011. Gender development and the human brain. Annu Rev Neurosci, 34, 6988.Google Scholar
Hines, M., Ahmed, S. F., and Hughes, I. A. 2003. Psychological outcomes and gender-related development in complete androgen insensitivity syndrome. Arch Sex Behav, 32, 93101.Google Scholar
Hochberg, Z. and Belsky, J. 2013. Evo-devo of human adolescence: beyond disease models of early puberty. BMC Med, 11, 113.Google Scholar
Hodes, G. E. and Epperson, C. N. 2019. Sex differences in vulnerability and resilience to stress across the life span. Biol Psychiatry, 86(6), 421–32.Google Scholar
Joels, M. and De Kloet, E. R. 1994. Mineralocorticoid and glucocorticoid receptors in the brain. Implications for ion permeability and transmitter systems. Prog Neurobiol, 43, 136.Google Scholar
Karg, K., Burmeister, M., Shedden, K., and Sen, S. 2011. The serotonin transporter promoter variant (5-HTTLPR), stress, and depression meta-analysis revisited: evidence of genetic moderation. Arch Gen Psychiatry, 68, 444–54.Google Scholar
Khandaker, G. M., Stochl, J., Zammit, S., Goodyer, I., Lewis, G., and Jones, P. B. 2018. Childhood inflammatory markers and intelligence as predictors of subsequent persistent depressive symptoms: a longitudinal cohort study. Psychol Med, 48, 1514–22.CrossRefGoogle ScholarPubMed
Kilford, E. J., Garrett, E., and Blakemore, S. J. 2016. The development of social cognition in adolescence: an integrated perspective. Neurosci Biobehav Rev, 70, 106–20.Google Scholar
Kircanski, K., Sisk, L. M., Ho, T. C., Humphreys, K. L., King, L. S., Colich, N. L., Ordaz, S. J., and Gotlib, I. H. 2019. Early life stress, cortisol, frontolimbic connectivity, and depressive symptoms during puberty. Dev Psychopathol, 31, 1011–22.Google Scholar
Kosti, K., Athanasiadis, L., and Goulis, D. G. 2019. Long-term consequences of androgen insensitivity syndrome. Maturitas, 127, 51–4.Google Scholar
Kritzer, M. 2004. The distribution of immunoreactivity for intracellular androgen receptors in the cerebral cortex of hormonally intact adult male and female rats: localization in pyramidal neurons making corticocortical connections. Cereb Cortex, 14, 268–80.Google Scholar
Lenroot, R. K. and Giedd, J. N. 2010. Sex differences in the adolescent brain. Brain Cogn, 72, 4655.CrossRefGoogle ScholarPubMed
Lijster, J. M., Dierckx, B., Utens, E. M., Verhulst, F. C., Zieldorff, C., Dieleman, G. C., and Legerstee, J. S. 2017. The age of onset of anxiety disorders. Can J Psychiatry, 62, 237–46.Google Scholar
Mahfouda, S., Moore, J. K., Siafarikas, A., Zepf, F. D., and Lin, A. 2017. Puberty suppression in transgender children and adolescents. Lancet Diabetes Endocrinol, 5, 816–26.Google Scholar
Matsuda, K. I., Mori, H., and Kawata, M. 2012. Epigenetic mechanisms are involved in sexual differentiation of the brain. Rev Endocr Metab Disord, 13, 163–71.Google Scholar
Meaney, M. J. and Szyf, M. 2005. Environmental programming of stress responses through DNA methylation: life at the interface between a dynamic environment and a fixed genome. Dialogues Clin Neurosci, 7, 103–23.Google Scholar
Melo, K. F., Mendonca, B. B., Billerbeck, A. E., Costa, E. M., Inacio, M., Silva, F. A., Leal, A. M., Latronico, A. C., and Arnhold, I. J. 2003. Clinical, hormonal, behavioral, and genetic characteristics of androgen insensitivity syndrome in a Brazilian cohort: five novel mutations in the androgen receptor gene. J Clin Endocrinol Metab, 88, 3241–50.CrossRefGoogle Scholar
Mendonca, B. B., Batista, R. L., Domenice, S., Costa, E. M., Arnhold, I. J., Russell, D. W., and Wilson, J. D. 2016. Steroid 5alpha-reductase 2 deficiency. J Steroid Biochem Mol Biol, 163, 206–11.Google Scholar
Michopoulos, V., Powers, A., Gillespie, C. F., Ressler, K. J., and Jovanovic, T. 2017. Inflammation in fear- and anxiety-based disorders: PTSD, GAD, and beyond. Neuropsychopharmacology, 42, 254–70.Google Scholar
Mihalik, A., Ferreira, F. S., Rosa, M. J., Moutoussis, M., Ziegler, G., Monteiro, J. M., Portugal, L., Adams, R. A., Romero-Garcia, R., VErtes, P. E., Kitzbichler, M. G., Vasa, F., Vaghi, M. M., Bullmore, E. T., Fonagy, P., Goodyer, I. M., Jones, P. B., Consortium, N., Dolan, R., and Mourao-Miranda, J. 2019. Brain-behaviour modes of covariation in healthy and clinically depressed young people. Sci Rep, 9, 11536.Google Scholar
Moriguchi, S., Shinoda, Y., Yamamoto, Y., Sasaki, Y., Miyajima, K., Tagashira, H., and Fukunaga, K. 2013. Stimulation of the sigma-1 receptor by DHEA enhances synaptic efficacy and neurogenesis in the hippocampal dentate gyrus of olfactory bulbectomized mice. PLoS One, 8, e60863.Google Scholar
Mullins, N. and Lewis, C. M. 2017. Genetics of depression: progress at last. Curr Psychiatry Rep, 19, 43.Google Scholar
Natu, V. S., Gomez, J., Barnett, M., Kirilina, E., Jaeger, C., Zhen, Z., Cox, S., Weiner, K. S., Weiskopf, N., and Grill-Spector, K. 8 October 2019. Apparent thinning of human visual cortex during childhood is associated with myelinisation. Proc Natl Acad Sci USA, 116(41), 20750–9, first published 23 September 2019.Google Scholar
Netherton, C., Goodyer, I., Tamplin, A., and Herbert, J. 2004. Salivary cortisol and dehydroepiandrosterone in relation to puberty and gender. Psychoneuroendocrinology, 29, 125–40.Google Scholar
Nugent, B. M., Wright, C. L., Shetty, A. C., Hodes, G. E., Lenz, K. M., Mahurkar, A., Russo, S. J., Devine, S. E., and Mccarthy, M. M. 2015. Brain feminization requires active repression of masculinization via DNA methylation. Nat Neurosci, 18, 690–7.Google Scholar
Nunez, J. L., Huppenbauer, C. B., Mcabee, M. D., Juraska, J. M., and Doncarlos, L. L. 2003. Androgen receptor expression in the developing male and female rat visual and prefrontal cortex. J Neurobiol, 56, 293302.Google Scholar
Ojeda, S. R. and Lomniczi, A. 2014. Puberty in 2013: unravelling the mystery of puberty. Nat Rev Endocrinol, 10, 67–9.Google Scholar
Owens, M., Herbert, J., Jones, P. B., Sahakian, B. J., Wilkinson, P. O., Dunn, V. J., Croudace, T. J., and Goodyer, I. M. 2014. Elevated morning cortisol is a stratified population-level biomarker for major depression in boys only with high depressive symptoms. Proc Natl Acad Sci U S A, 111, 3638–43.CrossRefGoogle ScholarPubMed
Peper, J. S., Hulshoff Pol, H. E., Crone, E. A., and Van Honk, J. 2011. Sex steroids and brain structure in pubertal boys and girls: a mini-review of neuroimaging studies. Neuroscience, 191, 2837.Google Scholar
Piekarski, D. J., Johnson, C. M., Boivin, J. R., Thomas, A. W., Lin, W. C., Delevich, K., E, M. G., and Wilbrecht, L. 2017. Does puberty mark a transition in sensitive periods for plasticity in the associative neocortex? Brain Res, 1654, 123–44.Google Scholar
Puckett, J. A., Matsuno, E., Dyar, C., MUstanski, B., and Newcomb, M. E. 2019. Mental health and resilience in transgender individuals: What type of support makes a difference? J Fam Psychol, 33(8), 954–64.Google Scholar
Rainville, J. R. and Hodes, G. E. 2019. Inflaming sex differences in mood disorders. Neuropsychopharmacology, 44, 184–99.Google Scholar
Ranta, K., Vaananen, J., Frojd, S., Isomaa, R., Kaltiala-Heino, R., and Marttunen, M. 2017. Social phobia, depression and eating disorders during middle adolescence: longitudinal associations and treatment seeking. Nord J Psychiatry, 71, 605–13.Google Scholar
Rowe, R., Maughan, B., WorthmaN, C. M., Costello, E. J., and Angold, A. 2004. Testosterone, antisocial behavior, and social dominance in boys: pubertal development and biosocial interaction. Biol Psychiatry, 55, 546–52.Google Scholar
Sandberg, D. E. and Meyer-Bahlburg, H. F. 1994. Variability in middle childhood play behavior: effects of gender, age, and family background. Arch Sex Behav, 23, 645–63.Google Scholar
Sapolsky, R. M. 1996. Stress, glucocorticoids, and damage to the nervous system: the current state of confusion. Stress, 1, 119.Google Scholar
Silvers, J. A., Insel, C., Powers, A., Franz, P., Helion, C., Martin, R., Weber, J., Mischel, W., Casey, B. J., and Ochsner, K. N. 2017. The transition from childhood to adolescence is marked by a general decrease in amygdala reactivity and an affect-specific ventral-to-dorsal shift in medial prefrontal recruitment. Dev Cogn Neurosci, 25, 128–37.Google Scholar
Uenoyama, Y., Inoue, N., Nakamura, S., and Tsukamura, H. 2019. Central mechanism controlling pubertal onset in mammals: a triggering role of kisspeptin. Front Endocrinol (Lausanne), 10, 312.Google Scholar
Uher, R. and Mcguffin, P. 2008. The moderation by the serotonin transporter gene of environmental adversity in the aetiology of mental illness: review and methodological analysis. Mol Psychiatry, 13, 131–46.Google Scholar
Van Harmelen, A. L., Kievit, R. A., Ioannidis, K., Neufeld, S., Jones, P. B., Bullmore, E., Dolan, R., Consortium, N., Fonagy, P., and Goodyer, I. 2017. Adolescent friendships predict later resilient functioning across psychosocial domains in a healthy community cohort. Psychol Med, 47, 2312–22.Google Scholar
Van Meter, A., Moreira, A. L. R., and Youngstrom, E. 2019. Updated meta-analysis of epidemiologic studies of pediatric bipolar disorder. J Clin Psychiatry, 80.Google Scholar
Vermeersch, H., T’Sjoen, G., Kaufman, J. M., Vincke, J., and Van Houtte, M. 2010. Testosterone, androgen receptor gene CAG repeat length, mood and behaviour in adolescent males. Eur J Endocrinol, 163, 319–28.Google Scholar
Wagner, C. A., Alloy, L. B., and Abramson, L. Y. 2015. Trait rumination, depression, and executive functions in early adolescence. J Youth Adolesc, 44, 1836.Google Scholar
Wierenga, L. M., Bos, M. G. N., Schreuders, E., Kamp, VD, Peper, F., Tamnes, J. S., C. K., and Crone, E. A. 2018. Unraveling age, puberty and testosterone effects on subcortical brain development across adolescence. Psychoneuroendocrinology, 91, 105–14.Google Scholar
Yohn, C. N., Gergues, M. M., and Samuels, B. A. 2017. The role of 5-HT receptors in depression. Mol Brain, 10, 28.Google Scholar
Zhang, J., Yoa, W., and Hashimoto, K. 2016. Brain-derived neurotrophic factor (BDNF)-TrkB signaling in inflammation-related depression and potential therapeutic targets. Current Neuropharmacology, 14, 721–31.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×