Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-20T20:13:47.114Z Has data issue: false hasContentIssue false

Chapter 58 - Hematopoietic Cell Transplants for Human Immunodeficiency Virus-Related Lymphomas

from Section 15 - Hematopoietic Cell Transplants for Non-Neoplastic Diseases

Published online by Cambridge University Press:  24 May 2017

Hillard M. Lazarus
Affiliation:
Case Western Reserve University, Ohio
Robert Peter Gale
Affiliation:
Imperial College London
Armand Keating
Affiliation:
University of Toronto
Andrea Bacigalupo
Affiliation:
Ospedale San Martino, Genoa
Reinhold Munker
Affiliation:
Louisiana State University, Shreveport
Kerry Atkinson
Affiliation:
University of Queensland
Syed Ali Abutalib
Affiliation:
Midwestern Regional Medical Center, Cancer Treatment Centers of America, Chicago
Get access
Type
Chapter
Information
Hematopoietic Cell Transplants
Concepts, Controversies and Future Directions
, pp. 552 - 558
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Breen, E. C., Hussain, S. K., Magpantay, L., et al. B-cell stimulatory cytokines and markers of immune activation are elevated several years prior to the diagnosis of systemic AIDS-associated non-Hodgkin B-cell lymphoma. Cancer Epidemiol Biomarkers Prev 2011; 20: 1303–14.CrossRefGoogle Scholar
Shibata, D., Weiss, L. M., Hernandez, A. M., Nathwani, B. N., Bernstein, L., Levine, A. M. Epstein–Barr virus-associated non-Hodgkin’s lymphoma in patients infected with the human immunodeficiency virus. Blood 1993; 81: 2102–9.CrossRefGoogle ScholarPubMed
Swerdlow, S. H., International Agency for Research on Cancer, World Health Organization. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues, 4th ed. Lyon, France, International Agency for Research on Cancer, 2008.Google Scholar
Centers for Disease Control. Revision of the CDC surveillance case definition for acquired immunodeficiency syndrome. Council of State and Territorial Epidemiologists; AIDS Program, Center for Infectious Diseases. MMWR Morb Mortal Wkly Rep 1987; 36: 1S15S.Google Scholar
Little, R. F., Dunleavy, K. Update on the treatment of HIV-associated hematologic malignancies. Hematology Am Soc Hematol Educ Program 2013; 2013: 382–8.Google ScholarPubMed
Martis, N., Mounier, N. Hodgkin lymphoma in patients with HIV infection: a review. Curr Hematol Malig Rep 2012; 7: 228–34.CrossRefGoogle ScholarPubMed
Gopal, S., Patel, M. R., Yanik, E. L., et al. Temporal trends in presentation and survival for HIV-associated lymphoma in the antiretroviral therapy era. J Natl Cancer Inst 2013; 105: 1221–9.CrossRefGoogle ScholarPubMed
Dunleavy, K., Wilson, W. H. Implications of the shifting pathobiology of AIDS-related lymphoma. J Natl Cancer Inst 2013; 105: 1170–1.CrossRefGoogle ScholarPubMed
Dunleavy, K., Wilson, W. H. How I treat HIV-associated lymphoma. Blood 2012; 119: 3245–55.CrossRefGoogle Scholar
Dunleavy, K., Pittaluga, S., Shovlin, M., et al. Low-intensity therapy in adults with Burkitt’s lymphoma. N Engl J Med 2013; 369: 1915–25.CrossRefGoogle ScholarPubMed
Dunleavy, K., Little, R. F., Pittaluga, S., et al. The role of tumor histogenesis, FDG-PET, and short-course EPOCH with dose-dense rituximab (SC-EPOCH-RR) in HIV-associated diffuse large B-cell lymphoma. Blood 2010; 115: 3017–24.CrossRefGoogle ScholarPubMed
Xicoy, B., Ribera, J. M., Muller, M., et al. Dose-intensive chemotherapy including rituximab is highly effective but toxic in human immunodeficiency virus-infected patients with Burkitt lymphoma/leukemia: parallel study of 81 patients. Leuk Lymphoma 2014; 55(10): 2341–8.CrossRefGoogle ScholarPubMed
Noy, A., Kaplan, L., Lee, J. Y. A modified dose intensive R-CODOX-M/IVAC for HIV-associated Burkitt and atypical Burkitt lymphoma(BL) demonstrates high cure rates and low toxicity: prospective multicenter phase II trial of the AIDS Malignancy Consortium (AMC 048). Blood 2013; 122: 2.CrossRefGoogle Scholar
Re, A., Cattaneo, C., Skert, C., et al. Stem cell mobilization in HIV seropositive patients with lymphoma. Haematologica 2013; 98: 1762–8.CrossRefGoogle ScholarPubMed
Attolico, I., Pavone, V., Ostuni, A., et al. Plerixafor added to chemotherapy plus G-CSF is safe and allows adequate PBSC collection in predicted poor mobilizer patients with multiple myeloma or lymphoma. Biol Blood Marrow Transplant 2012; 18: 241–9.CrossRefGoogle ScholarPubMed
Gabarre, J., Azar, N., Autran, B., Katlama, C., Leblond, V. High-dose therapy and autologous haematopoietic stem-cell transplantation for HIV-1-associated lymphoma. Lancet 2000; 355: 1071–2.CrossRefGoogle ScholarPubMed
Krishnan, A., Molina, A., Zaia, J., et al. Durable remissions with autologous stem cell transplantation for high-risk HIV-associated lymphomas. Blood 2005; 105: 874–8.CrossRefGoogle ScholarPubMed
Krishnan, A., Palmer, J. M., Zaia, J. A., Tsai, N. C., Alvarnas, J., Forman, S. J. HIV status does not affect the outcome of autologous stem cell transplantation (ASCT) for non-Hodgkin lymphoma (NHL). Biol Blood Marrow Transplant 2010; 16: 1302–8.CrossRefGoogle Scholar
Diez-Martin, J. L., Balsalobre, P., Re, A., et al. Comparable survival between HIV+ and HIV– non-Hodgkin and Hodgkin lymphoma patients undergoing autologous peripheral blood stem cell transplantation. Blood 2009; 113: 6011–4.CrossRefGoogle ScholarPubMed
Re, A., Michieli, M., Casari, S., et al. High-dose therapy and autologous peripheral blood stem cell transplantation as salvage treatment for AIDS-related lymphoma: long-term results of the Italian Cooperative Group on AIDS and Tumors (GICAT) study with analysis of prognostic factors. Blood 2009; 114: 1306–13.CrossRefGoogle Scholar
Zaia, J., Krishnan, A., Rossi, J. Hematopoietic cell transplantation for patients with human immunodeficiency virus infection. In: Thomas’ Hematopoietic Cell Transplantation. Hoboken, NJ, Wiley-Blackwell, 2008: p. 1001.Google Scholar
Alvarnas, J.C., Le Rademacher, J., Wang, Y., et al. Autologous hematopoietic cell transplantation for HIV-related lymphoma. Blood 2016; 128:1050–8.CrossRefGoogle ScholarPubMed
Cillo, A. R., Krishnan, A., Mitsuyasu, R. T., et al. Plasma viremia and cellular HIV-1 DNA persist despite autologous hematopoietic stem cell transplantation for HIV-related lymphoma. J Acquir Immune Defic Syndr 2013; 63: 438–41.CrossRefGoogle ScholarPubMed
Serrano, D., Carrion, R., Balsalobre, P., et al. HIV-associated lymphoma successfully treated with peripheral blood stem cell transplantation. Exp Hematol 2005; 33: 487–94.CrossRefGoogle ScholarPubMed
Spitzer, T. R., Ambinder, R. F., Lee, J. Y., et al. Dose-reduced busulfan, cyclophosphamide, and autologous stem cell transplantation for human immunodeficiency virus-associated lymphoma: AIDS Malignancy Consortium study 020. Biol Blood Marrow Transplant 2008; 14: 5966.CrossRefGoogle ScholarPubMed
Te Boekhorst, P. A., Lamers, C. H., Schipperus, M. R., et al. T-lymphocyte reconstitution following rigorously T-cell-depleted versus unmodified autologous stem cell transplants. Bone Marrow Transplant 2006; 37: 763–72.CrossRefGoogle ScholarPubMed
Pratesi, C., Simonelli, C., Zanussi, S., et al. Recent thymic emigrants in lymphoma patients with and without human immunodeficiency virus infection candidates for autologous peripheral stem cell transplantation. Clin Exp Immunol 2008; 151: 101–9.Google ScholarPubMed
Simonelli, C., Zanussi, S., Pratesi, C., et al. Immune recovery after autologous stem cell transplantation is not different for HIV-infected versus HIV-uninfected patients with relapsed or refractory lymphoma. Clin Infect Dis 2010; 50: 1672–9.CrossRefGoogle ScholarPubMed
Benicchi, T., Ghidini, C., Re, A., et al. T-cell immune reconstitution after hematopoietic stem cell transplantation for HIV-associated lymphoma. Transplantation 2005; 80: 673–82.CrossRefGoogle ScholarPubMed
Resino, S., Perez, A., Seoane, E., et al. Short communication: Immune reconstitution after autologous peripheral blood stem cell transplantation in HIV-infected patients: might be better than expected? AIDS Res Hum Retroviruses 2007; 23: 543–8.CrossRefGoogle ScholarPubMed
Hutter, G., Nowak, D., Mossner, M., et al. Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N Engl J Med 2009; 360: 692–8.CrossRefGoogle ScholarPubMed
Allers, K., Hutter, G., Hofmann, J., et al. Evidence for the cure of HIV infection by CCR5Delta32/Delta32 stem cell transplantation. Blood 2011; 117: 2791–9.CrossRefGoogle ScholarPubMed
Hutter, G., Zaia, J. A. Allogeneic haematopoietic stem cell transplantation in patients with human immunodeficiency virus: the experiences of more than 25 years. Clin Exp Immunol 2011; 163: 284–95.CrossRefGoogle ScholarPubMed
Gupta, V., Tomblyn, M., Pedersen, T. L., et al. Allogeneic hematopoietic cell transplantation in human immunodeficiency virus-positive patients with hematologic disorders: a report from the center for international blood and marrow transplant research. Biol Blood Marrow Transplant 2009; 15: 864–71.CrossRefGoogle ScholarPubMed
Novembre, J., Galvani, A. P., Slatkin, M. The geographic spread of the CCR5 Delta32 HIV-resistance allele. PLoS Biol 2005; 3: e339.CrossRefGoogle ScholarPubMed
Sanchez, R., Wills, S., Young, S. HIV returns in two patients after bone marrow transplant. CNN. December 9, 2013; Sect. Health. http://www.cnn.com/2013/12/07/health/hiv-patients/ (accessed July 29, 2014).Google Scholar
Petz, L. D., Redei, I., Bryson, Y., et al. Hematopoietic cell transplantation with cord blood for cure of HIV infections. Biol Blood Marrow Transplant 2013; 19: 393–7.CrossRefGoogle ScholarPubMed
Gonzalez, G., Park, S., Chen, D., Armitage, S., Shpall, E., Behringer, R. Identification and frequency of CCR5Delta32/Delta32 HIV-resistant cord blood units from Houston area hospitals. HIV Med 2011; 12: 481–6.CrossRefGoogle ScholarPubMed
Mitsuyasu, R. T., Merigan, T. C., Carr, A., et al. Phase 2 gene therapy trial of an anti-HIV ribozyme in autologous CD34+ cells. Nat Med 2009; 15: 285–92.CrossRefGoogle ScholarPubMed
DiGiusto, D. L., Krishnan, A., Li, L., et al. RNA-based gene therapy for HIV with lentiviral vector-modified CD34(+) cells in patients undergoing transplantation for AIDS-related lymphoma. Sci Transl Med 2010; 2: 36ra43.CrossRefGoogle ScholarPubMed
DiGiusto, D. L., Stan, R., Krishnan, A., Li, H., Rossi, J. J., Zaia, J. A. Development of hematopoietic stem cell based gene therapy for HIV-1 infection: considerations for proof of concept studies and translation to standard medical practice. Viruses 2013; 5: 2898–919.CrossRefGoogle ScholarPubMed
Krishnan, A. Y., Zaia, J. A., Rossi, J. J., et al. Autologous stem cell transplantation (ASCT) for AIDS-related lymphomas (ARL) and the potential role of HIV-resistant stem cells. Blood 2006; 108: Abstract 491a.CrossRefGoogle Scholar
Aiuti, A., Slavin, S., Aker, M., et al. Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning. Science 2002; 296: 2410–3.CrossRefGoogle ScholarPubMed
Candotti, F., Shaw, K. L., Muul, L., et al. Gene therapy for adenosine deaminase-deficient severe combined immune deficiency: clinical comparison of retroviral vectors and treatment plans. Blood 2012; 120: 3635–46.CrossRefGoogle ScholarPubMed
Tebas, P., Stein, D., Tang, W. W., et al. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med 2014; 370: 901–10.CrossRefGoogle ScholarPubMed
Gabarre, J., Marcelin, A. G., Azar, N., et al. High-dose therapy plus autologous hematopoietic stem cell transplantation for human immunodeficiency virus (HIV)-related lymphoma: results and impact on HIV disease. Haematologica 2004; 89: 1100–8.Google ScholarPubMed
Balsalobre, P., Diez-Martin, J. L., Re, A., et al. Autologous stem-cell transplantation in patients with HIV-related lymphoma. J Clin Oncol 2009; 27: 2192–8.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×