Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-fnpn6 Total loading time: 0 Render date: 2024-08-01T14:29:36.211Z Has data issue: false hasContentIssue false

Chapter 61 - Selecting Human Leukocyte Antigen Haplotype Mismatch versus Cord Blood Graft

from Section 16 - Novel Transplant Strategies

Published online by Cambridge University Press:  24 May 2017

Hillard M. Lazarus
Affiliation:
Case Western Reserve University, Ohio
Robert Peter Gale
Affiliation:
Imperial College London
Armand Keating
Affiliation:
University of Toronto
Andrea Bacigalupo
Affiliation:
Ospedale San Martino, Genoa
Reinhold Munker
Affiliation:
Louisiana State University, Shreveport
Kerry Atkinson
Affiliation:
University of Queensland
Syed Ali Abutalib
Affiliation:
Midwestern Regional Medical Center, Cancer Treatment Centers of America, Chicago
Get access
Type
Chapter
Information
Hematopoietic Cell Transplants
Concepts, Controversies and Future Directions
, pp. 579 - 590
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Lee, SJ, Klein, J, Haagenson, M, Baxter-Lowe, LA, Confer, DL, Eapen, M, et al. High-resolution donor-recipient HLA matching contributes to the success of unrelated donor marrow transplantation. Blood 2007;110(13):4576–83.Google Scholar
Woolfrey, A, Klein, JP, Haagenson, M, Spellman, S, Petersdorf, E, Oudshoorn, M, et al. HLA-C antigen mismatch is associated with worse outcome in unrelated donor peripheral blood stem cell transplantation. Biol Blood Marrow Transplant 2011;17(6):885–92.CrossRefGoogle ScholarPubMed
Gragert, L, Eapen, M, Williams, E, Freeman, J, Spellman, S, Baitty, R, et al. HLA match likelihoods for hematopoietic stem-cell grafts in the U.S. registry. N Engl J Med 2014;371(4):339–48.CrossRefGoogle ScholarPubMed
Bashey, A, Zhang, X, Sizemore, CA, Manion, K, Brown, S, Holland, HK, et al. T-cell-replete HLA-haploidentical hematopoietic transplantation for hematologic malignancies using post-transplantation cyclophosphamide results in outcomes equivalent to those of contemporaneous HLA-match related and unrelated donor transplantation. J Clin Oncol 2013;31(10):1310–6.CrossRefGoogle Scholar
Brunstein, CG, Eapen, M, Ahn, KW, Appelbaum, FR, Ballen, KK, Champlin, RE, et al. Reduced-intensity conditioning transplantation in acute leukemia: the effect of source of unrelated donor stem cells on outcomes. Blood 2012;119(23):5591–8.CrossRefGoogle ScholarPubMed
Brunstein, CG, Gutman, JA, Weisdorf, DJ, Woolfrey, AE, Defor, TE, Gooley, TA, et al. Allogeneic hematopoietic cell transplantation for hematologic malignancy: relative risks and benefits of double umbilical cord blood. Blood 2010;116(22):4693–9.CrossRefGoogle ScholarPubMed
Eapen, M, Rubinstein, P, Zhang, MJ, Stevens, C, Kurtzberg, J, Scaradavou, A, et al. Outcomes of transplantation of unrelated donor umbilical cord blood and bone marrow in children with acute leukaemia: a comparison study. Lancet 2007;369(9577):1947–54.CrossRefGoogle ScholarPubMed
Rocha, V, Cornish, J, Sievers, EL, Filipovich, A, Locatelli, F, Peters, C, et al. Comparison of outcomes of unrelated bone marrow and umbilical cord blood transplants in children with acute leukemia. Blood 2001;97(10):2962–71.CrossRefGoogle ScholarPubMed
Raiola, AM, Dominietto, A, di Grazia, C, Lamparelli, T, Gualandi, F, Ibatici, A, et al. Unmanipulated haploidentical transplants compared with other alternative donors and match sibling grafts. Biol Blood Marrow Transplant 2014;20(10):1573–9.CrossRefGoogle ScholarPubMed
Anasetti, C, Beatty, PG, Storb, R, Martin, PJ, Mori, M, Sanders, JE, et al. Effect of HLA incompatibility on graft-versus-host disease, relapse, and survival after marrow transplantation for patients with leukemia or lymphoma. Hum Immunol 1990;29(2):7991.CrossRefGoogle ScholarPubMed
Beatty, PG, Clift, RA, Mickelson, EM, Nisperos, BB, Flournoy, N, Martin, PJ, et al. Marrow transplantation from related donors other than HLA-identical siblings. N Engl J Med 1985;313(13):765–71.CrossRefGoogle ScholarPubMed
Ash, RC, Horowitz, MM, Gale, RP, van Bekkum, DW, Casper, JT, Gordon-Smith, EC, et al. Bone marrow transplantation from related donors other than HLA-identical siblings: effect of T cell depletion. Bone Marrow Transplant 1991;7(6):443–52.Google ScholarPubMed
Aversa, F, Terenzi, A, Tabilio, A, Falzetti, F, Carotti, A, Ballanti, S, et al. Full haplotype-mismatch hematopoietic stem-cell transplantation: a phase II study in patients with acute leukemia at high risk of relapse. J Clin Oncol 2005;23(15):3447–54.CrossRefGoogle Scholar
Martelli, MF, Di Ianni, M, Ruggeri, L, Falzetti, F, Carotti, A, Terenzi, A, et al. HLA-haploidentical transplantation with regulatory and conventional T-cell adoptive immunotherapy prevents acute leukemia relapse. Blood 2014;124(4):638–44.CrossRefGoogle ScholarPubMed
Wang, Y, Liu, DH, Liu, KY, Xu, LP, Zhang, XH, Han, W, et al. Long-term follow-up of haploidentical hematopoietic stem cell transplantation without in vitro T cell depletion for the treatment of leukemia: nine years of experience at a single center. Cancer 2013;119(5):978–85.CrossRefGoogle ScholarPubMed
Rizzieri, DA, Koh, LP, Long, GD, Gasparetto, C, Sullivan, KM, Horwitz, M, et al. Partially match, nonmyeloablative allogeneic transplantation: clinical outcomes and immune reconstitution. J Clin Oncol 2007;25(6):690–7.CrossRefGoogle ScholarPubMed
Kanda, J, Long, GD, Gasparetto, C, Horwitz, ME, Sullivan, KM, Chute, JP, et al. Reduced-intensity allogeneic transplantation using alemtuzumab from HLA-match related, unrelated, or haploidentical related donors for patients with hematologic malignancies. Biol Blood Marrow Transplant 2014;20(2):257–63.CrossRefGoogle ScholarPubMed
Luznik, L, O’Donnell, PV, Symons, HJ, Chen, AR, Leffell, MS, Zahurak, M, et al. HLA-haploidentical bone marrow transplantation for hematologic malignancies using nonmyeloablative conditioning and high-dose, posttransplantation cyclophosphamide. Biol Blood Marrow Transplant 2008;14(6):641–50.CrossRefGoogle ScholarPubMed
O’Donnell, PV, Luznik, L, Jones, RJ, Vogelsang, GB, Leffell, MS, Phelps, M, et al. Nonmyeloablative bone marrow transplantation from partially HLA-mismatch related donors using posttransplantation cyclophosphamide. Biol Blood Marrow Transplant 2002;8(7):377–86.Google Scholar
Kanakry, CG, Ganguly, S, Zahurak, M, Bolanos-Meade, J, Thoburn, C, Perkins, B, et al. Aldehyde dehydrogenase expression drives human regulatory T cell resistance to posttransplantation cyclophosphamide. Sci Transl Med 2013;5(211):211ra157.CrossRefGoogle ScholarPubMed
Ross, D, Jones, M, Komanduri, K, Levy, RB. Antigen and lymphopenia-driven donor T cells are differentially diminished by post-transplantation administration of cyclophosphamide after hematopoietic cell transplantation. Biol Blood Marrow Transplant 2013;19(10):1430–8.CrossRefGoogle ScholarPubMed
Kasamon, YL, Luznik, L, Leffell, MS, Kowalski, J, Tsai, HL, Bolanos-Meade, J, et al. Nonmyeloablative HLA-haploidentical bone marrow transplantation with high-dose posttransplantation cyclophosphamide: effect of HLA disparity on outcome. Biol Blood Marrow Transplant 2010;16(4):482–9.CrossRefGoogle ScholarPubMed
Castagna, L, Crocchiolo, R, Furst, S, Bramanti, S, El-Cheikh, J, Sarina, B, et al. Bone marrow compared with peripheral blood stem cells for haploidentical transplantation with a nonmyeloablative conditioning regimen and post-transplantation cyclophosphamide. Biol Blood Marrow Transplant 2014;20(5):724–9.CrossRefGoogle ScholarPubMed
Raiola, AM, Dominietto, A, Ghiso, A, Di Grazia, C, Lamparelli, T, Gualandi, F, et al. Unmanipulated haploidentical bone marrow transplantation and posttransplantation cyclophosphamide for hematologic malignancies after myeloablative conditioning. Biol Blood Marrow Transplant 2013;19(1):117–22.CrossRefGoogle ScholarPubMed
Raj, K, Pagliuca, A, Bradstock, K, Noriega, V, Potter, V, Streetly, M, et al. Peripheral blood hematopoietic stem cells for transplantation of hematological diseases from related, haploidentical donors after reduced-intensity conditioning. Biol Blood Marrow Transplant 2014;20(6):890–5.CrossRefGoogle ScholarPubMed
Solomon, SR, Sizemore, CA, Sanacore, M, Zhang, X, Brown, S, Holland, HK, et al. Haploidentical transplantation using T cell replete peripheral blood stem cells and myeloablative conditioning in patients with high-risk hematologic malignancies who lack conventional donors is well tolerated and produces excellent relapse-free survival: results of a prospective phase II trial. Biol Blood Marrow Transplant 2012;18(12):1859–66.CrossRefGoogle ScholarPubMed
Ciurea, SO, Mulanovich, V, Saliba, RM, Bayraktar, UD, Jiang, Y, Bassett, R, et al. Improved early outcomes using a T cell replete graft compared with T cell depleted haploidentical hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 2012;18(12):1835–44.CrossRefGoogle Scholar
Wagner, JE, Eapen, M, Carter, SL, Haut, PR, Peres, E, Schultz, KR, et al. No survival advantage after double umbilical cord blood (UCB) compared to single UCB transplant in children with hematological malignancy: results of the Blood and Marrow Transplant Clinical Trials Network (BMT CTN 0501) Randomized Trial. ASH Annual Meeting Abstracts 2012;120(21):359.Google Scholar
Hwang, WY, Samuel, M, Tan, D, Koh, LP, Lim, W, Linn, YC. A meta-analysis of unrelated donor umbilical cord blood transplantation versus unrelated donor bone marrow transplantation in adult and pediatric patients. Biol Blood Marrow Transplant 2007;13(4):444–53.CrossRefGoogle ScholarPubMed
Eapen, M, Rocha, V, Sanz, G, Scaradavou, A, Zhang, MJ, Arcese, W, et al. Effect of graft source on unrelated donor haemopoietic stem-cell transplantation in adults with acute leukaemia: a retrospective analysis. Lancet Oncol 2010;11(7):653–60.CrossRefGoogle ScholarPubMed
Rocha, V, Labopin, M, Ruggeri, A, Blaise, D, Rio, B, Cornelissen, JJ, et al. Outcomes after double cord blood transplantation compared to single cord blood transplantation in adults with acute leukemia given a reduced intensity conditioning regimen. ASH Annual Meeting Abstracts 2012;120(21):232.Google Scholar
Lindemans, CA, Chiesa, R, Amrolia, PJ, Rao, K, Nikolajeva, O, de Wildt, A, et al. Impact of thymoglobulin prior to pediatric unrelated umbilical cord blood transplantation on immune reconstitution and clinical outcome. Blood 2014;123(1):126–32.CrossRefGoogle ScholarPubMed
Brunstein, CG, Barker, JN, Weisdorf, DJ, DeFor, TE, Miller, JS, Blazar, BR, et al. Umbilical cord blood transplantation after nonmyeloablative conditioning: impact on transplantation outcomes in 110 adults with hematologic disease. Blood 2007;110(8):3064–70.CrossRefGoogle ScholarPubMed
Brunstein, CG, Fuchs, EJ, Carter, SL, Karanes, C, Costa, LJ, Wu, J, et al. Alternative donor transplantation after reduced intensity conditioning: results of parallel phase 2 trials using partially HLA-mismatch related bone marrow or unrelated double umbilical cord blood grafts. Blood 2011;118(2):282–8.CrossRefGoogle ScholarPubMed
Szabolcs, P, Cairo, MS. Unrelated umbilical cord blood transplantation and immune reconstitution. Semin Hematol 2010;47(1):2236.CrossRefGoogle ScholarPubMed
Jacobson, CA, Turki, AT, McDonough, SM, Stevenson, KE, Kim, HT, Kao, G, et al. Immune reconstitution after double umbilical cord blood stem cell transplantation: comparison with unrelated peripheral blood stem cell transplantation. Biol Blood Marrow Transplant 2012;18(4):565–74.CrossRefGoogle ScholarPubMed
Ruggeri, A, Peffault de Latour, R, Carmagnat, M, Clave, E, Douay, C, Larghero, J, et al. Outcomes, infections, and immune reconstitution after double cord blood transplantation in patients with high-risk hematological diseases. Transpl Infect Dis 2011;13(5):456–65.CrossRefGoogle ScholarPubMed
Klein, AK, Patel, DD, Gooding, ME, Sempowski, GD, Chen, BJ, Liu, C, et al. T-cell recovery in adults and children following umbilical cord blood transplantation. Biol Blood Marrow Transplant 2001;7(8):454–66.CrossRefGoogle ScholarPubMed
Komanduri, KV, St John, LS, de Lima, M, McMannis, J, Rosinski, S, McNiece, I, et al. Delayed immune reconstitution after cord blood transplantation is characterized by impaired thymopoiesis and late memory T-cell skewing. Blood 2007;110(13):4543–51.CrossRefGoogle ScholarPubMed
Kanda, J, Chiou, LW, Szabolcs, P, Sempowski, GD, Rizzieri, DA, Long, GD, et al. Immune recovery in adult patients after myeloablative dual umbilical cord blood, match sibling, and match unrelated donor hematopoietic cell transplantation. Biol Blood Marrow Transplant 2012;18(11):16641676 e1.CrossRefGoogle ScholarPubMed
Dominietto, A, Raiola, AM, Bruno, B, Pende, D, Meazza, R, Gualandi, F, et al. Fast immune recovery following unmanipulated haploidentical BMT with post-transplant high-dose cyclophosphamide as GvHD prophylaxis: a comparison with siblings, unrelated donors, cord blood (EBMT abstract). Bone Marrow Transplant 2012;47:S257S258.Google Scholar
El-Cheikh, J, Roberto, C, Sabine, F, Stefania, B, Barbara, S, Angela, G, et al. Comparison of umbilical cord blood and haploidentical donor grafts in adults with high risk hematologic diseases after fludarabine cyclophosphamide and TBI 2 Gy based reduced-intensity conditioning regimen stem cell transplantation. Blood 2013;122(21):3288.Google Scholar
González-Vicent, M, Molina, B, Andión, M, Sevilla, J, Ramirez, M, Pérez, A, et al. Allogeneic hematopoietic transplantation using haploidentical donor vs. unrelated cord blood donor in pediatric patients: a single-center retrospective study. Euro J Haematol 2011;87(1):4653.CrossRefGoogle ScholarPubMed
Mo, XD, Zhao, XY, Liu, DH, Chen, YH, Xu, LP, Zhang, XH, et al. Umbilical cord blood transplantation and unmanipulated haploidentical hematopoietic SCT for pediatric hematologic malignancies. Bone Marrow Transplant 2014;49(8):1070–5.CrossRefGoogle Scholar
Huang, XJ, Liu, DH, Liu, KY, Xu, LP, Chen, H, Han, W. Donor lymphocyte infusion for the treatment of leukemia relapse after HLA-mismatch/haploidentical T-cell-replete hematopoietic stem cell transplantation. Haematologica 2007;92(3):414–7.CrossRefGoogle Scholar
Yan, CH, Liu, DH, Xu, LP, Liu, KY, Zhao, T, Wang, Y, et al. Modified donor lymphocyte infusion-associated acute graft-versus-host disease after haploidentical T-cell-replete hematopoietic stem cell transplantation: incidence and risk factors. Clin Transplant 2012;26(6):868–76.CrossRefGoogle ScholarPubMed
Zeidan, AM, Forde, PM, Symons, H, Chen, A, Smith, BD, Pratz, K, et al. HLA-haploidentical donor lymphocyte infusions for patients with relapsed hematologic malignancies after related HLA-haploidentical bone marrow transplantation. Biol Blood Marrow Transplant 2014;20(3):314–8.CrossRefGoogle ScholarPubMed
Roth, JA, Bensink, ME, O’Donnell, PV, Fuchs, EJ, Eapen, M, Ramsey, SD. Design of a cost-effectiveness analysis alongside a randomized trial of transplantation using umbilical cord blood versus HLA-haploidentical related bone marrow in advanced hematologic cancer. J Comp Eff Res 2014;3(2):135–44.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×