Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-t6hkb Total loading time: 0 Render date: 2024-07-08T14:30:14.576Z Has data issue: false hasContentIssue false

Part III - Complex Mixing Consequences

Published online by Cambridge University Press:  05 June 2016

Fernando F. Grinstein
Affiliation:
Los Alamos National Laboratory
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Brouillete, M., “The Ritchmyer-Meshkov instability,” Annu. Rev. Fluid Mech., 34, 445468, 2002.CrossRefGoogle Scholar
Sagaut, P., Large Eddy Simulation for Incompressible Flows, 3rd edition, Springer, 2006.Google Scholar
Hill, D.J., Pantano, C., and Pullin, D.I., “Large-eddy simulation and multiscale modeling of a Richtmyer–Meshkov instability with reshock,” J. Fluid Mech., 557, 2961, 2006.CrossRefGoogle Scholar
Grinstein, F.F, Margolin, L.G., and Rider, W.J., editors, Implicit Large Eddy Simulation: Computing Turbulent Fluid Dynamics, 2nd printing, Cambridge University Press, 2010.Google Scholar
Drikakis, D.,Grinstein, F.F., and Youngs, D., “On the computation of instabilities and symmetry-breaking in fluid mechanics,” Progress in Aerospace Sciences, 41(8), 609641, 2005.CrossRefGoogle Scholar
Dimonte, G., “Nonlinear evolution of the Rayleigh–Taylor and Richtmyer–Meshkov instabilities,” Phys. Plasma, 6(5), 20092015, 1999.CrossRefGoogle Scholar
Grinstein, F.F., Gowardhan, A.A., and Wachtor, A.J., “Simulations of Richtmyer–Meshkov instabilities in planar shock-tube experiments,” Physics of Fluids, 23, 034106, 2011.CrossRefGoogle Scholar
Gittings, M., Weaver, R., Clover, M., Betlach, T., Byrne, N., Coker, R., Dendy, E., Hueckstaedt, R., New, K., Oakes, W. R., Ranta, D., and Stefan, R., “The RAGE radiation-hydrodynamic code,” Comput. Science and Discovery, 1, 015005, 2008.CrossRefGoogle Scholar
Gowardhan, A.A., Ristorcelli, J.R., and Grinstein, F.F., “The bipolar behavior of the Richtmyer–Meshkov instability,” Physics of Fluids, 23 (Letters), 071701, 2011.CrossRefGoogle Scholar
Gowardhan, A.A. and Grinstein, F.F., “Numerical simulation of Richtmyer–Meshkov instabilities in shocked gas curtains,” Journal of Turbulence, 12(43), 124, 2011.CrossRefGoogle Scholar
Richtmyer, R. D., “Taylor instability in shock acceleration of compressible fluids,” Commun. Pure Appl. Maths., 13, 297319, 1960.CrossRefGoogle Scholar
Vetter, M. and Surtevant, B., “Experiments on the Richtmyer–Meshkov instability of an air/ SF6 interface,” Shock Waves, 4, 247252, 1995.CrossRefGoogle Scholar
Jacobs, J.W. and Sheeley, J.M., “Experimental study of incompressible Richtmyer–Meshkov instability,” Physics of Fluids, 8, 405415, 1996.CrossRefGoogle Scholar
Poggi, F., Thorembey, M.H., and Rodriguez, G., “Velocity measurements in turbulent gaseous mixtures induced by Richtmyer–Meshkov instability,” Phys. Fluids, 10, 2698, 1998.CrossRefGoogle Scholar
Orlicz, G.C., Balakumar, B.J., Tomkins, C.D., and Prestridge, K.P., “A Mach number study of the Richtmyer–Meshkov instability in a varicose, heavy-gas curtain,” Phys. Fluids 21, 064102, 2009.CrossRefGoogle Scholar
Leinov, E.,Malamud, G., Elbaz, Y., Levin, A., Ben-dor, G., Shvarts, D., and Sadot, O., “Experimental and numerical investigation of the Richtmyer–Meshkov instability under re-shock conditions,” J. Fluid Mech., 626, pp. 449475, 2009.CrossRefGoogle Scholar
Schilling, O. and Latini, M., “High-order WENO simulations of three-dimensional reshocked Richtmyer–Meshkov instability to late times: dynamics, dependence on initial conditions, and comparisons to experimental data,” Acta Mathematica Scientia, 30B(2), 595620, 2010.CrossRefGoogle Scholar
Cohen, R.H., Dannevik, W.P., Dimits, A.M., Eliason, D.E., Mirin, A.A., Zhou, Y., Porter, D.H., and Woodward, P.R., “Three-dimensional simulation of a Richtmyer–Meshkov instability with a two-scale initial perturbation,” Physics of Fluids, 14, 36923709, 2002.CrossRefGoogle Scholar
Youngs, D.L., “Rayleigh–Taylor and Richtmyer–Meshkov mixing,” ch. 13 in Implicit Large Eddy Simulation: Computing Turbulent Fluid Dynamics, ed. by Grinstein, F.F, Margolin, L.G., and Rider, W.J., 2nd printing, Cambridge University Press, 2010.Google Scholar
Hahn, M.,Drikakis, D., Youngs, D.L., and Williams, R.J.R., “Richtmyer–Meshkov turbulent mixing arising from an inclined material interface with realistic surface perturbations and reshocked flow,” Physics of Fluids 23, 046101, 2011.CrossRefGoogle Scholar
Thornber, B., Drikakis, D., Williams, R.J.R., and Youngs, D.L., “The influence of initial conditions on turbulent mixing due to Richtmyer-Meshkov instability,” J. Fluid Mech. 654, 99139, 2010.CrossRefGoogle Scholar
Ukai, S.,Balakrishnan, K., and Menon, S., “Growth rate predictions of single- and multi-mode Richtmyer–Meshkov instability with reshock,” Shock Waves, 21, 533546, 2011.CrossRefGoogle Scholar
Jimenez, J., Wray, A.A., Saffman, P.G., and Rogallo, R.S., “The structure of intense vorticity in isotropic turbulence,” J. Fluid Mech., 255, 6590, 832, 1993.CrossRefGoogle Scholar
Mikaelian, K.O., “Extended model for Richtmyer-Meshkov mix,” Physica D, 240, 935942, 2010.CrossRefGoogle Scholar
Ristorcelli, J.R., Gowardhan, A.A., and Grinstein, F.F., “Two classes of Richtmyer-Meshkov Instabilities: a detailed statistical look,” Phys. Fluids, 25, 044106, 2013.CrossRefGoogle Scholar
Porter, D.H., Pouquet, A., and Woodward, P.R., “Kolmogorov-like spectra in decaying three-dimensional supersonic flows,” Phys. Fluids, 6, 2133, 1994.CrossRefGoogle Scholar
Grinstein, F.F., “Vortex dynamics and entrainment in regular free jets,” J. Fluid Mechanics, 437, 69101, 2001.CrossRefGoogle Scholar
Drikakis, D., Fureby, C., Grinstein, F.F., and Youngs, D., “Simulation of transition and turbulence decay in the Taylor-Green vortex,” Journal of Turbulence, 8, 020, 2007.CrossRefGoogle Scholar
Sreenivasan, K.R., Prabhu, A., and Narasimha, R., “Zero-crossings in turbulent signals,” J. Fluid Mechanics, 137, 251272, 1983.CrossRefGoogle Scholar
Zhou, Y., Grinstein, F.F., Wachtor, A.J., and Haines, B.M., “Estimating the effective Reynolds number in implicit large eddy simulation,” Physical Review E, 89, 013303, 2014.CrossRefGoogle ScholarPubMed
Dimotakis, P.E., “The mixing transition in turbulent flows,” J. Fluid Mech. 409, 69, 2000.CrossRefGoogle Scholar
Zhou, Y., “Unification and extension of the similarity scaling criteria and mixing transition for studying astrophysics using high energy density laboratory experiments or numerical simulations,” Physics of Plasmas, 14, 082701, 2007.CrossRefGoogle Scholar
Tennekes, H. and Lumley, J.L., A First Course in Turbulence, MIT Press, 1972.CrossRefGoogle Scholar
Balasubramanian, S., Orlicz, G.C., Prestridge, K.P., and Balakumar, B.J., “Experimental study of initial condition dependence on Richtmyer-Meshkov instability in the presence of reshock,” Physics of Fluids, 24, 034103, 2012.CrossRefGoogle Scholar
George, W.K. and Davidson, L., “Role of initial conditions in establishing asymptotic flow behavior,” AIAA Journal, 42, 438446, 2004.CrossRefGoogle Scholar
Lombardini, M.,Hill, D.J., Pullin, D.I., and Meiron, D.I., “Atwood ratio dependence of Richtmyer–Meshkov flows under reshock conditions using large-eddy simulations,” J. Fluid Mech., 670, 439480, 2011.CrossRefGoogle Scholar
Balakumar, B.J., Orlicz, G., Tomkins, C., and Prestridge, K., “Simultaneous particle-image velocimetry–planar laser-induced fluorescence measurements of Richtmyer–Meshkov instability growth in a gas curtain with and without reshock,” Phys. Fluids, 20, 124103, 2008.CrossRefGoogle Scholar
Shankar, S.K., Kawai, S., and Lele, S.K., “Two-dimensional viscous flow simulation of a shock accelerated heavy gas cylinder,” Physics of Fluids, 23, 024102, 2011.CrossRefGoogle Scholar
Weirs, V.G., Dupont, T., and Plewa, T., “Three-dimensional effects in shock-cylinder interactions,” Physics of Fluids, 20, 044102, 2008.CrossRefGoogle Scholar
Mikaelian, K.O., “Numerical simulations of Richtmyer–Meshkov instabilities in finite-thickness fluids layers,” Physics of Fluids, 8, 1269, 1996.CrossRefGoogle Scholar

References

Welser-Sherrill, L., Fincke, J., Doss, F., Loomis, E., Flippo, K., Offermann, D., Keiter, P., Haines, B.M., and Grinstein, F.F.. “Two laser-driven mix experiments to study reshock and shear.” High Energy Density Physics Journal 9(3):496499, 2013.CrossRefGoogle Scholar
Haines, B.M., Grinstein, F.F., Welser–Sherrill, L., and Fincke, J. R.. “Simulations of material mixing in laser-driven reshock experiments.” Phys. Plasmas 20:022309, 2013.CrossRefGoogle Scholar
Haines, B.M., Grinstein, F.F., Welser–Sherrill, L., Fincke, J.R., and Doss, F. W.. “Simulation ensemble for a laser-driven shear experiment.” Phys. Plasmas 20:092301, 2013.Google Scholar
Haines, B.M., Grinstein, F.F., and Fincke, J.R.. “Three-dimensional simulation strategy to determine the effects of turbulent mixing on inertial-confinement-fusion capsule performance.” Physical Review E, 89:053302, 2014.CrossRefGoogle ScholarPubMed
Ho, C.-M. and Huerre, P.. “Perturbed free shear layers.” Ann. Rev. Fluid Mech. 16:365424, 1984.CrossRefGoogle Scholar
Williamson, C.H.K.. “Vortex dynamics in the cylinder wake.” Annu. Rev. Fluid. Mech. 28:477539, 1996.CrossRefGoogle Scholar
Gutmark, E.J. and Grinstein, F.F.. “Flow control with noncircular jets.” Annu. Rev. Fluid Mech. 31:239272, 1999.CrossRefGoogle Scholar
Grinstein, F.F.. “Vortex dynamics and transition to turbulence in free shear flows,” in Implicit Large Eddy Simulation: Computing Turbulent Flow Dynamics, ed. by Grinstein, F. F., Margolin, L. G., and Rider, W. J.. Cambridge University Press, New York, 2nd printing, 2010.Google Scholar
Sagaut, P.. Large Eddy Simulation for Incompressible Flows, 3rd ed. Springer, New York, 2006.Google Scholar
Grinstein, F.F., Margolin, L.G., and Rider, W.J., eds. Implicit Large Eddy Simulation: Computing Turbulent Flow Dynamics. Cambridge University Press, New York, 2nd printing, 2010.Google Scholar
George, W.K. and Davidson, L.. “Role of initial conditions in establishing asymptotic flow behavior.” AIAA Journal. 42:438446, 2004.CrossRefGoogle Scholar
Haines, B.M., Grinstein, F.F., and Schwarzkopf, J.D.. “Reynolds-averaged Navier-Stokes anitialization and benchmarking in shock-driven turbulent mixing.” Journal of Turbulence 14(2):4670, 2013.CrossRefGoogle Scholar
Gittings, M. et al.The RAGE radiation-hydrodynamic code.” Comput. Science & Discovery 1:015005, 2008.CrossRefGoogle Scholar
Lyon, S.P. and Johnson, J. D.. “SESAME: the Los Alamos National Laboratory Equation of State Database.” Los Alamos National Laboratory LA-UR-92-3407, 1992.Google Scholar
Launder, B.E., Reese, G.J., and Rodi, W.. “Progress in the development of a Reynolds-stress turbulence closure.” J. Fluid Mech., 68:537, 1975.CrossRefGoogle Scholar
Besnard, D., Harlow, F.H., Rauenzahn, F.H., and Zemach, C.. “Turbulence transport equations for variable-density turbulence and their relationship to two-field models.” LA-UR-12303, Los Alamos National Laboratory, 1992.CrossRefGoogle Scholar
Grégoire, O., Souffland, D., and Gauthier, S.. “A second-order turbulence model for gaseous mixtures induced by Richtmyer-Meshkov instability.” J. Turbul. 6:1, 2005.CrossRefGoogle Scholar
Livescu, D., Ristorcelli, J.R., Gore, R.A., Dean, S.H., Cabot, W.H., and Cook, A.W.. “High-Reynolds number Rayleigh-Taylor turbulence.” J. Turbul. 10:1, 2009.CrossRefGoogle Scholar
Schwarzkopf, J.D., Livescu, D., Gore, R.A., Rauenzahn, R.M., and Ristorcelli, J.R.. “Application of a second-moment closure model to mixing processes involving multi-component miscible fluids.” J. Turbul. 12:135, 2011.CrossRefGoogle Scholar
Banerjee, A., Gore, R.A., and Andrews, M. J.. “Development and validation of a turbulent mix model for variable-density and compressible flows.” Phys. Rev. E 82:046309, 2010.CrossRefGoogle ScholarPubMed
Cook, A.W.. “Enthalpy diffusion in multicomponent flows.” Phys. Fluids 21:055109, 2009.CrossRefGoogle Scholar
George, W.K.. “The Self-preservation of turbulent flows and its relation to initial conditions and coherent structures,” in Advances in Turbulence, ed. by George, W.K. and Arndt, R.E.A., New York, 1989.Google Scholar
Dimonte, G.. “Nonlinear evolution of the Rayleigh-Taylor and Richtmyer-Meshkov instabilities.” Phys. Plasma., 6:2009–15, 1999.CrossRefGoogle Scholar
Youngs, D.. “Rayleigh-Taylor and Richtmyer-Meshkov mixing,” in Implicit Large Eddy Simulation: Computing Turbulent Flow Dynamics, ed. by Grinstein, F.F., Margolin, L.G., and Rider, W.J.. Cambridge University Press, 2nd printing, 2010.Google Scholar
Gowardhan, A.A. and Grinstein, F.F.. “Numerical simulation of Richtmyer–Meshkov instabilities in shocked gas curtains.” Journal of Turbulence 12(43):124, 2011.CrossRefGoogle Scholar
Jiménez, J., Wray, A.A., Saffman, P.G., and Rogallo, R.S.. “The structure of intense vorticity in isotropic turbulence.” J. Fluid Mech., 255:6590, 1993.CrossRefGoogle Scholar
Wachtor, A.J., Grinstein, F.F., DeVore, C.R., Ristorcelli, J.R., and Margolin, L.G.. “Mixing in implicit large-eddy simulation of statistically stationary isotropic turbulence.” Physics of Fluids, 25:025101, 2013.CrossRefGoogle Scholar
Fureby, C. and Grinstein, F.F.. “Monotonically integrated large eddy simulation of free shear flows.” AIAA J., 37:544, 1999.CrossRefGoogle Scholar
Dimotakis, P.E.. “The mixing transition in turbulent flows.” J. Fluid Mech., 409:69, 2000.CrossRefGoogle Scholar
Gowardhan, A.A., Ristorcelli, J.R., and Grinstein, F.F.. “The bipolar behavior of the Richtmyer–Meshkov instability.” Physics of Fluids 23:071701, 2011.CrossRefGoogle Scholar
Kolmogorov, A.N.. C. R. Acad. Sci. URSS 30:301, 1941.Google Scholar
Falcovich, G., Gawedzki, K., and Vergassola, M.. “Particles and fields in fluid turbulence.” Reviews of Modern Physics, 73:913–75, 2001.Google Scholar
Tennekes, H. and Lumley, J.L.. A First Course in Turbulence. MIT Press, Cambridge, MA, 1972.CrossRefGoogle Scholar
Zhou, Y.. “Unification and extension of the similarity scaling criteria and mixing transition for studying astrophysics using high energy density laboratory experiments or numerical simulations.” Physics of Plasmas, 14:082701, 2007.CrossRefGoogle Scholar
Zhou, Y., Grinstein, F.F., Wachtor, A.J., and Haines, B.M.. “Estimating the effective Reynolds number in implicit large eddy simulation.” Phys. Rev. E 89:013303, 2014.CrossRefGoogle Scholar
Kaneda, Y., et al.Energy dissipation rate and energy spectrum in high resolution direct numerical simulations of turbulence in a periodic box.” Phys. Fluids 15, L21. 2003.CrossRefGoogle Scholar
Grinstein, F.F., Gowardhan, A.A., and Wachtor, A.J.. “Simulations of Richtmyer-Meshkov instabilities in planar shock-tube experiments.” Physics of Fluids, 23:034106, 2011.CrossRefGoogle Scholar
Nuckolls, J., Wood, L., Thiessen, A., and Zimmerman, G.. “Laser compression of matter to super-high densities: Thermonuclear (CTR) applications.” Nature 239, 139, 1972.CrossRefGoogle Scholar
Thomas, V.A. and Kares, R.J.. “Drive asymmetry and the origin of turbulence in an ICF implosion.” Phys. Rev. Letters 109, 075004, 2012.CrossRefGoogle Scholar
Haan, S.W. et al.Design and modeling of ignition targets for the National Ignition Facility.” Phys. Plasma., 2:24802487, 1995.CrossRefGoogle Scholar
Callahan, D.A. et al.Optimization of the NIF ignition point design hohlraum.” J. Phy.s. Conf. Ser., 112:022021, 2008.CrossRefGoogle Scholar
Clark, D.S., Haan, S.W., Hammel, B.A., Salmonson, J.D., Callahan, D.A., and Town, R.P.J.. “Plastic ablator ignition capsule design for the National Ignition Facility.” Phys. Plasma. 17:052703, 2010.CrossRefGoogle Scholar
Haan, S.W. et al.Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility.” Phys. Plasma. 18:051001, 2011.CrossRefGoogle Scholar
Radha, P.B. et al.Two-dimensional simulations of plastic-shell, direct-drive implosions on OMEGA.” Physics of Plasmas 12:032702, 2005.CrossRefGoogle Scholar
Radha, P.B. et al.Multidimensional analysis of direct-drive, plastic-shell implosions on OMEGA.” Physics of Plasmas 12:056307, 2005.CrossRefGoogle Scholar
Radha, P.B. et al.Triple-picket warm plastic shell implosions on OMEGA.” Physics of Plasmas 18:012705, 2011.CrossRefGoogle Scholar
Molvig, K., Hoffman, N.M., Albright, B.J., Nelson, E.M., and Webster, R.B.. “Knudsen layer reduction of fusion reactivity.” Phys. Rev. Lett., 109:095001, 2012.CrossRefGoogle ScholarPubMed
Amendt, P., Landen, O.L., Robey, H.F., Li, C.K., and Petrasso, R.D.. “Plasma barrodiffusion in inertial-confinement-fusion implosions: application to observed yield anomalies in thermonuclear fuel mixtures.” Phys. Rev. Lett., 105:115005, 2010.CrossRefGoogle ScholarPubMed
Dodd, E.S. et al.The effects of laser absorption on direct-drive capsule experiments at OMEGA.” Phys. Plasma. 19:042703, 2012.CrossRefGoogle Scholar
Scott, R.H.H. et al.Numerical modeling of the sensitivity of x-ray driven implosions to low-mode flux asymmetries.” Phys. Rev. Letters 110:075001, 2013.CrossRefGoogle ScholarPubMed
Clark, D.S. et al.Short-wavelength and three-dimensional instability evolution in National Ignition Facility ignition capsule designs.” Physics of Plasmas 18:082701, 2011.CrossRefGoogle Scholar
Grim, G.P. et al.Nuclear imaging of the fuel assembly in ignition experiments.” Physics of Plasmas 20:056320, 2013.CrossRefGoogle Scholar
Joggerst, C.C. et al.Cross-code comparison of mixing during the implosion of dense cylindrical and spherical shells.” J. Comput. Phys. 275:154173, 2014.CrossRefGoogle Scholar
Haines, B.M., Grinstein, F.F., Welser–Sherrill, L., Fincke, J.R., and Doss, F.W.. “Analysis of the effects of energy deposition on shock–driven turbulent mixing.” Physics of Plasmas 20:072306, 2013.CrossRefGoogle Scholar
Richtmyer, R.D.. “Taylor instability in shock acceleration of compressible fluids.” Comm. Pure Appl. Math 13:297319, 1960.CrossRefGoogle Scholar
Holmes, R.L. et al.Richtmyer–Meshkov instability growth: Experiment, simulation, and theory.” J. Fluid Mech. 389:5579, 1999.CrossRefGoogle Scholar
Ristorcelli, J.R., Gowardhan, A.A., and Grinstein, F.F.. “Two classes of Richtmyer-Meshkov instabilities: A detailed statistical look.” Physics of Fluids 25:044106, 2013.CrossRefGoogle Scholar
Marshall, F.J. et al.Direct-drive-implosion experiments with enhanced fluence balance on OMEGA.” Physics of Plasmas 11(1):251259, 2004.CrossRefGoogle Scholar
Drazin, P.G.. Introduction to Hydrodynamic Stability, Cambridge University Press, 2002.CrossRefGoogle Scholar
Epstein, R.. “On the Bell–Plesset effects: the effects of uniform compression and geometrical convergence on the classical Rayleigh–Taylor instability.” Physics of Plasmas 11(11):51145124, 2004.CrossRefGoogle Scholar
Park, H.S. et al.High-adiabat high-foot inertial confinement fusion implosion experiments on the National Ignition Facility.” Phys. Rev. Lett. 112:055001, 2014.CrossRefGoogle ScholarPubMed
Baumgaertel, J.A. et al.Observation of early shell-dopant mix in OMEGA direct-drive implosions and comparisons with radiation-hydrodynamic simulations.” Physics of Plasmas 21:052706, 2014.CrossRefGoogle Scholar

References

Rygg, J.R., Frenje, J.A., Li, C.K., Seguin, F.H., Petrasso, R.D., Marshall, F.J., Delettrez, J.A., Knauer, J.P., Meyerhofer, D.D., and Stoeckl, C., “Observations of the collapse of asymmetrically driven convergent shocks,” Phys. Plasmas 15, 034505 (2008).CrossRefGoogle Scholar
Li, C.K., Seguin, F.H., Frenje, J.A., Petrasso, R.D., Delettrez, J.A., McKenty, P.W., Sangster, T.C., Keck, R.L., Soures, J.M., Marshall, F.J., Meyerhofer, D.D., Goncharov, V.N., Knauer, J.P., Radha, P.B., Regan, S.P., and Seka, W., “Effects of nonuniform illumination on implosion asymmetry in direct-drive inertial confinement fusion”, Phys. Rev. Lett. 92, 205001 (2004).CrossRefGoogle ScholarPubMed
Plesset, M.S., “On the Stability of Fluid Flows with Spherical Symmetry,” J. Appl. Phys. 25, 96 (1954). G. I. Bell, “Taylor instability of cylinders and spheres in the small amplitude approximation,” Los Alamos National Laboratory Report LA-1321, (November, 1951).CrossRefGoogle Scholar
Thomas, V.A. and Kares, R.J., “Drive asymmetry and the origin of turbulence in an ICF implosion,” Phys. Rev. Lett. 109, 075044 (2012).CrossRefGoogle Scholar
Gittings, M., Weaver, R., Clover, M., Betlach, T., Byrne, N., Coker, R., Dendy, E., Hueckstaedt, R., New, K., Oakes, W.R., Ranta, D., and Stafan, R., “The RAGE radiation-hydrodynamic code,” Comput. Sci. Disc. 1, 015005 (2008).CrossRefGoogle Scholar
Widnall, S.E., Bliss, D.B., and Tsai, C.Y., “The instability of short waves on a vortex ring,” J. Fluid Mech. 66, 33 (1974).CrossRefGoogle Scholar
Crow, S.C., “Stability theory for a pair of trailing vortices,” AIAA J. 8, 2172 (1970).CrossRefGoogle Scholar
Leweke, T. and Williamson, C.H.K., “Cooperative elliptic instability of a vortex pair,” J. Fluid Mech. 360, 85 (1998).CrossRefGoogle Scholar
Yabe, T., “The compression phase in ICF targets,” in Nuclear Fusion by Inertial Confinement: A Comprehensive Treatise, editors Velarde, G., Ronan, Y., and Martinez-Val, J., CRC Press, Inc., 283 (1993).Google Scholar
Takaki, R. and Hussain, A.K.M.F., “Recombination of vortex filaments and its role in aerodynamic noise,” Fifth Symp. Turb. Shear Flows, Cornell U., 3.19–3.26, (1985).Google Scholar
Kerr, R.M. and Hussain, F., “Simulation of vortex reconnection,” Physica D 37, 474 (1989).Google Scholar
Grinstein, F. F., Margolin, L.G., and Rider, W.J., Implicit Large Eddy Simulation, Cambridge University Press (2007).CrossRefGoogle Scholar
Wilson, D.C., Kyrala, G.A., Benage, J.F. Jr., Wysocki, F.J., Gunderson, M.A., Garbett, W.J., Glebov, V. Yu., Frenje, J., Yaakobi, B., Hermann, H.W., Coley, J.H., Welser-Sherril, L., Horsfield, C.J., and Roberts, S.A., “The effects of pre-mix on burn in ICF capsules,” Journal of Physics: Conference Series 112 (2008).Google Scholar
Wilson, D.C., Bradley, P.A., Cerjan, C.J., Salmonson, J.D., Spears, B.K., Hatchett, S.P. II, Hermann, H.W., and Glebov, V. Yu., “Diagnosing ignition with DT reaction history,” Review of Scientific Instruments 79, 10E525 (2008).CrossRefGoogle ScholarPubMed

References

Lindl, J.D., Inertial Confinement Fusion: The Quest for Ignition and Energy Gain Using Indirect Drive, Vol. 2998 (Springer, New York, 1998).Google Scholar
Gull, S., Royal Astronomical Society, Monthly Notices 171, 263 (1975).Google Scholar
Thomson, W., Proceedings of the Royal Society 7, 63 (1871).Google Scholar
von Helmholtz, H., Monatsberichte der K¨oniglichen Preussische Akademie der Wissenschaften zu Berlin 23, 215 (1868).Google Scholar
Rayleigh, , Proceedings of the London Mathematical Society 14, 170 (1883).Google Scholar
Taylor, G., Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 201, 192 (1950).Google Scholar
Richtmyer, R.D., Communications on Pure and Applied Mathematics 13, 297 (1960).CrossRefGoogle Scholar
Meshkov, E., Soviet Fluid Dynamics 4, 101 (1969).Google Scholar
Kucherenko, Y.A., Balabin, S., Cherret, R., and Haas, J., Laser and Particle Beams 15, 25 (1997).Google Scholar
Dalziel, S., Linden, P., and Youngs, D., Journal of Fluid Mechanics 399, 1 (1999).CrossRefGoogle Scholar
Smeeton, V.S. and Youngs, D.L., AWE Report No. O 35/87 (1987).Google Scholar
Dimonte, G. and Schneider, M., Physics of Fluids 12, 304 (2000).CrossRefGoogle Scholar
Olson, D. and Jacobs, J., Physics of Fluids 21, 034103 (2009).Google Scholar
Banerjee, A., Kraft, W.N., and Andrews, M.J., Journal of Fluid Mechanics 659, 127 (2010).CrossRefGoogle Scholar
Youngs, D.L., Physics of Fluids A: Fluid Dynamics 3, 1312 (1991).CrossRefGoogle Scholar
Youngs, D.L., Laser and particle beams 12, 725 (1994).CrossRefGoogle Scholar
Dimonte, G., Youngs, D., Dimits, A., Weber, S., Marinak, M., Wunsch, S., Garasi, C., Robinson, A., Andrews, M., Ramaprabhu, P., et al., Physics of Fluids 16, 1668 (2004).CrossRefGoogle Scholar
Cook, A.W., Cabot, W., and Miller, P.L., Journal of Fluid Mechanics 511, 333 (2004).CrossRefGoogle Scholar
Youngs, D.L., Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 367, 2971 (2009).Google Scholar
Mueschke, N.J. and Schilling, O., Physics of Fluids 21, 014106 (2009).Google Scholar
Ristorcelli, J. and Clark, T., Journal of Fluid Mechanics 507, 213 (2004).CrossRefGoogle Scholar
Livescu, D. and Ristorcelli, J., Journal of Fluid Mechanics 591, 43 (2007).CrossRefGoogle Scholar
Livescu, D. and Ristorcelli, J., Journal of Fluid Mechanics 605, 145 (2008).CrossRefGoogle Scholar
Livescu, D., Ristorcelli, J., Gore, R., Dean, S., Cabot, W., and Cook, A., Journal of Turbulence (2009).Google Scholar
Andronov, V.A., Bakhrakh, S.M., Meshkov, E.E., Mokhov, V.N., Nikiforov, V.V., Pevnitskii, A. V., and Tolshmyakhov, A.I., Sov. Phys. JETP 44 (1976).Google Scholar
Gauthier, S. and Bonnet, M., Physics of Fluids A: Fluid Dynamics 2, 1685 (1990).CrossRefGoogle Scholar
Dimonte, G. and Tipton, R., Physics of Fluids 18, 085101 (2006).CrossRefGoogle Scholar
Chiravalle, V.P., Laser and Particle Beams 24, 381 (2006).CrossRefGoogle Scholar
Grégoire, O., Souffland, D., and Gauthier, S., Journal of Turbulence (2005).Google Scholar
Cranfill, C. W., Los Alamos National Laboratory Report LA-UR–92-2484 (1992).Google Scholar
Scannapieco, A.J. and Cheng, B., Physics Letters A 299, 49 (2002).Google Scholar
Llor, A., Laser and Particle Beams 21, 305 (2003).Google Scholar
Besnard, D., Harlow, F.H., Rauenzahn, R.M., and Zemach, C., Los Alamos National Laboratory Report LA-12303-MS (1992).Google Scholar
Banerjee, A., Gore, R.A., and Andrews, M.J., Physical Review E 82, 046309 (2010).CrossRefGoogle Scholar
Schwarzkopf, J.D., Livescu, D., Gore, R.A., Rauenzahn, R.M., and Ristorcelli, J. R., Journal of Turbulence (2011).Google Scholar
Stalsberg-Zarling, K. and Gore, R.A., Los Alamos National Laboratory Report LA-UR–1104773 (2011).Google Scholar
Haines, B.M., Grinstein, F.F., and Schwarzkopf, J.D., Journal of Turbulence 14, 46 (2013).CrossRefGoogle Scholar
Waltz, J. and Gianakon, T., Computer Physics Communications 183, 70 (2012).CrossRefGoogle Scholar
Denissen, N., Fung, J., Reisner, J., and Andrews, M., Los Alamos National Laboratory Report LA-UR–12–24386 (2012).Google Scholar
Ptitzyna, N., Kucherenko, Y., Chitaikin, V., and Pylaev, A., Proceedings of the 4th International Workshop on the Physics of Compressible Turbulent Mixing (1993).Google Scholar
Andrews, M., Ph.D. Thesis, London University (1986).Google Scholar
Andrews, M.J. and Spalding, D.B., Physics of Fluids A: Fluid Dynamics 2, 922 (1990).Google Scholar
Andrews, M., International Journal for Numerical Methods in Fluids 21, 205 (1995).CrossRefGoogle Scholar
Rollin, B. and Andrews, M., Proceedings of the ASME Fluids Engineering Summer Meeting (2012).Google Scholar
Holford, J.M., Dalziel, S.B., and Youngs, D., Laser and Particle Beams 21, 419 (2003).CrossRefGoogle Scholar
Wei, T. and Livescu, D., International Conference on Numerical Methods in Multiphase Flow, Penn State, PA (2012).Google Scholar
Smalyuk, V., Tipton, R., Pino, J., Casey, D., Grim, G., Remington, B., Rowley, D., Weber, S., Barrios, M., Benedetti, L., et al., Physical Review Letters 112, 025002 (2014).Google Scholar
Marinak, M., Kerbel, G., Gentile, N., Jones, O., Munro, D., Pollaine, S., Dittrich, T., and Haan, S., Physics of Plasmas (1994–present) 8, 2275 (2001).CrossRefGoogle Scholar
Weber, C.R., Clark, D.S., Cook, A.W., Busby, L.E., and Robey, H.F., Phys. Rev. E 89, 053106 (2014).CrossRefGoogle Scholar
Burton, D.E., Lawrence Livermore National Laboratory Report UCRL–JC–110555 (1992).Google Scholar
Burton, D.E., Lawrence Livermore National Laboratory Report UCRL–JC–118788 (1994).Google Scholar
Caramana, E., Burton, D., Shashkov, M., and Whalen, P., Journal of Computational Physics 146, 227 (1998).CrossRefGoogle Scholar
Waltz, J., Numerical Methods for Multi-Material Fluids and Structures (Pavia, Italy 2009).Google Scholar
Andrews, M., Youngs, D., and Livescu, D., Los Alamos National Laboratory Report LA-UR– 12–24091 (2012).Google Scholar
Andrews, M., Youngs, D., Livescu, D., and Wei, T., ASME J. Fluids Eng. Special Issue: IWPTCM13, Vol. 136, Issue 8 (2014).Google Scholar
Pope, S.B., Turbulent Flows (Cambridge University Press, 2000).CrossRefGoogle Scholar
Linden, P., Redondo, J., and Youngs, D., Journal of Fluid Mechanics 265, 97 (1994).CrossRefGoogle Scholar
Dimonte, G., Ramaprabhu, P., Youngs, D., Andrews, M., and Rosner, R., Physics of Plasmas 12, 056301 (2005).CrossRefGoogle Scholar
Glimm, J., Grove, J.W., Li, X.L., Oh, W., and Sharps, D.H., Journal of Computational Physics 169, 652 (2001).CrossRefGoogle Scholar
Rollin, B. and Andrews, M., Journal of Turbulence 14, 77 (2013).CrossRefGoogle Scholar
Read, K., Physica D: Nonlinear Phenomena 12, 45 (1984).CrossRefGoogle Scholar
Roache, P.J., Verification and Validation in Computational Science and Engineering (Hermosa, Albuquerque, 1998).Google Scholar
Burrows, K.D., Smeeton, V.S., and Youngs, D.L., AWE Report No. O 22/84 (1984).Google Scholar

References

Lefebvre, A.H., Gas Turbine Combustion, 2nd Edition, Taylor and Francis, 1999.Google Scholar
Huang, Y., Yang, V., “Dynamics and stability of lean-premixed swirl-stabilized combustion,” Prog. Energy. Comb. Sci. 35 (2009) 293364.CrossRefGoogle Scholar
Syred, N., Beér, J. M., “Combustion in swirling flows: A review,” Combust. Flame 23 (1974) 143201.CrossRefGoogle Scholar
Lilley, D., “Swirl flows in combustion: A review,” AIAA Journal 15 (8) (1977) 10631078.CrossRefGoogle Scholar
Kirtas, M., Patel, N., Sankaran, V., Menon, S., “Large-Eddy Simulation of a Swirl-Stabilized, Lean-Direct Injection Spray Combustor,” Proceedings of ASME GT2006 (Barcelona, Spain) GT 2006–91310.CrossRefGoogle Scholar
Patel, N., Menon, S., “Simulation of spray combustion in a lean-direct injection combustor,” Thirty-First Symposium (International) on Combustion 31 (2) (2007) 23272334.Google Scholar
Patel, N., Menon, S., “Simulation of spray-turbulence-flame interactions in a lean direct injection combustor,” Combust. Flame 153 (2008) 228257.CrossRefGoogle Scholar
Luo, K., Pitsch, H., Pai, M. G., Desjardins, O., “Direct numerical simulations and analysis of three-dimensional -heptane spray flames in a model swirl combustor,” Proc. Combust. Inst. 33 (2011) 21432152.CrossRefGoogle Scholar
Yoon, C., Gejji, R., Anderson, W. E., Sankaran, V., “Computational investigation of combustion dynamics in a lean direct injection gas turbine combustor,” AIAA 2013–0166 (2013) 1–20.Google Scholar
Fureby, C., Möller, S.-I., “Large eddy simulation of reacting flows applied to bluff body stabilized flames,” AIAA J. 33 (12) (1995) 23392347.CrossRefGoogle Scholar
Dally, B., Masri, A., Barlow, R., Fiechtner, G., “Instantaneous and mean compositional structure of bluff-body stabilized nonpremixed flames,” Combust. Flame 114 (1998) 119148.CrossRefGoogle Scholar
Ben-Yakar, A., Hanson, R. K., “Cavity flame-holders for ignition and flame stabilization in scramjets: an overview,” J. Propul. Power 17 (2001) 869877.CrossRefGoogle Scholar
Ghoniem, A.F., Park, S., Wachsman, A., Annaswamy, A., Wee, D., Altay, H.M., “Mechanism of combustion dynamics in a backward-facing step stabilized premixed flame,” Proc. Combust. Inst. 30 (2) (2005) 17831790.CrossRefGoogle Scholar
Wan, J., Fan, A., Maruta, K., Yao, H., Liu, W., “Experimental and numerical investigation on combustion characteristics of premixed hydrogen/air flame in a micro-combustor with a bluff body,” International Journal of Hydrogen Energy 37 (24) (2012) 1919019197.CrossRefGoogle Scholar
Terasaki, T., Hayashi, S., “The effects of fuel-air mixing on formation in non-premixed swirl burners,” Symposium (International) on Combustion, Vol. 26, 1996, pp. 27332739.CrossRefGoogle Scholar
Masri, A., Pope, S., Dally, B., “Probability density function computations of a strongly swirling nonpremixed flame stabilized on a new burner,” Proc. Combust. Inst. 28 (2000) 123131.CrossRefGoogle Scholar
Johnson, M., Littlejohn, D., Nazeer, W., Smith, K., Cheng, R., “A comparison of the flowfields and emissions of high-swirl injectors and low-swirl injectors for lean premixed gas turbines,” Proc. Combust. Inst. 30 (2005) 28672874.CrossRefGoogle Scholar
Gosman, A.D., Ioannides, E., “Aspects of computer simulation of liquid-fueled combustors,” Journal of Energy 7 (1983) 482490.CrossRefGoogle Scholar
Luo, K., Pitsch, H., Pai, M.G., “Direct numerical simulation of three-dimensional swirling -heptane spray flames,” Center of Turbulence Research Annual Research Briefs, 2009, pp. 171–183.Google Scholar
Sankaran, V., Menon, S., “LES of spray combustion in swirling flows,” Journal of Turbulence 3 (2002) 011.CrossRefGoogle Scholar
Cai, J., Jeng, S.-M., Tacina, R., “The structure of a swirl–stabilized reacting spray issued from an axial swirler,” AIAA Paper 2005-1424 (2005).CrossRefGoogle Scholar
Menon, S., Patel, N., “Subgrid modeling for LES of spray combustion in large-scale combustors,” AIAA Journal 44 (4) (2006) 709723.CrossRefGoogle Scholar
Mongia, H.C., “Taps: A fourth generation propulsion combustor technology for low emissions,” AIAA-03–2657.Google Scholar
Giridharan, M.G., Mongia, H.C., Jeng, S.M., “Swirl cup modelling, part 8: Spray combustion in CFM56 single cup flame tube,” AIAA Paper 2003–0319.CrossRefGoogle Scholar
Colby, J.A., Menon, S., Jagoda, J., “Spray and emission characteristics near lean blow out in a counter-swirl stabilized gas turbine combustor,” Proceedings of the ASME Turbo Exposition GT2006-90974 (2006) 1–10.Google Scholar
Boileau, M., Staffelbach, G., Cuenot, B., Poinsot, T., “Bérat, LES of an ignition sequence in a gas turbine engine,” Combust. Flame 154 (2008) 222.CrossRefGoogle Scholar
Sanjosé, M., Senoner, J.M., Jaegle, F., Cuenot, B., Moreau, S., Poinsot, T., “Fuel injection model for Euler–Euler and Euler–Lagrange large-eddy simulations of an evaporating spray inside an aeronautical combustor,” Int. J. of Multiphase Flow 37 (2011) 514529.CrossRefGoogle Scholar
Terhaar, S., Bobusch, B.C., Paschereit, C.O., “Effects of outlet boundary conditions on the reacting flow field in a swirl-stabilized burner at dry and humid conditions,” Journal of Engineering for Gas Turbines and Power 134 (2012) 111501.CrossRefGoogle Scholar
Hadef, R., Lenze, B., “Measurements of droplets characteristics in a swirl-stabilized spray flame,” Exp. Fluid Thermal Sci. 30 (2005) 117130.CrossRefGoogle Scholar
White, F., Viscous Fluid Flow, McGraw-Hill Series in Mechanical Engineering, McGraw-Hill Higher Education, 2006.Google Scholar
Chen, R.-H., Driscoll, J.F., “The role of the recirculation vortex in improving fuel-air mixing within swirling flames,” Symposium (International) on Combustion 22 (1988) 531540.CrossRefGoogle Scholar
Huang, Y., Yang, V., “Effect of swirl on combustion dynamics in a lean-premixed swirl-stabilized combustor,” Proc. Combust. Inst. 30 (2005) 17751782.CrossRefGoogle Scholar
Selle, L., Benoit, L., Poinsot, T., Nicoud, F., Krebs, W., “Joint use of compressible large-eddy simulation and helmholtz solvers for the analysis of rotating modes in an industrial swirled burner,” Combust. Flame 145 (2006) 194205.CrossRefGoogle Scholar
Wang, S., Yang, V., Hsiao, G., Hsieh, S.-Y., Mongia, H.C., “Large-eddy simulations of gas-turbine swirl injector flow dynamics,” J. Fluid Mech. 583 (2007) 99122.CrossRefGoogle Scholar
Huang, Y., Sung, H.-G., Hsieh, S.-Y., Yang, V., “Large-eddy simulation of combustion dynamics of lean-premixed swirl-stabilized combustor,” J. Propul. Power 19 (2003) 782794.CrossRefGoogle Scholar
Roux, S., Lartigue, G., Poinsot, T., Meier, U., Bérat, C., “Studies of mean and unsteady flow in a swirled combustor using experiments, acoustic analysis, and large eddy simulations,” Combust. Flame 141 (2005) 4054.CrossRefGoogle Scholar
Kim, S., Menon, S., “Large-eddy simulation of a high-pressure, single-element lean direct-injected gas-turbine combustor,” AIAA 2014–0131.CrossRefGoogle Scholar
Liu, A. B., Reitz, R.D., “Mechanisms of air-assisted liquid atomization,” Atomization and Sprays 3 (1993) 5575.CrossRefGoogle Scholar
Li, X., Soteriou, M.C., “High-fidelity simulation of fuel atomization in a realistic swirling flow injector,” Atomization and Sprays 23 (2013) 10491078.CrossRefGoogle Scholar
Faeth, G.M., Hsiang, L.-P., Wu, P.-K., “Structure and Breakup Properties of Sprays,” Int. J. Multiphase Flow 21 (1995) 99127.CrossRefGoogle Scholar
Wu, P.-K., Kirkendall, K.A., Fuller, R.P., Nejad, A.S., “Breakup processes of liquid jets in subsonic crossflows,” J. Propul. Power 13 (1997) 6473.CrossRefGoogle Scholar
Wu, P.-K., Kirkendall, K.A., Fuller, R.P., Nejad, A.S., “Spray structures of liquid jets atomized in subsonic crossflows,” J. Propul. Power 14 (1998) 173182.CrossRefGoogle Scholar
Sallam, K.A., Faeth, G.M., “Surface properties during primary breakup of turbulent round liquid jets in still air,” AIAA Journal 41 (2003) 15141524.CrossRefGoogle Scholar
Sommerfeld, M., Qiu, H.-H., “Experimental studies of spray evaporation in turbulent flow,” Int. J. of Heat and Fluid Flow 19 (1998) 1022.CrossRefGoogle Scholar
Apte, S.V., Moin, P., “Spray modeling and predictive simulations in realistic gas-turbine engines,” in Handbook of Atomization and Sprays, Springer, 2011, pp. 811835.CrossRefGoogle Scholar
Reitz, R.D., Bracco, F.V., “Mechanisms of atomization of a liquid jet,” Physics of Fluids 25 (10) (1982) 17301742.CrossRefGoogle Scholar
Chigier, N., Reitz, R. D., “Regimes of jet breakup and breakup mechanisms,” AIAA Progress in Astronautics and Aeronautics, Recent Advances in Spray Combustion, K. Kuo, Ed. Volume 166, 1995, pp. 109135.Google Scholar
Wu, P.K., Miranda, R.F., Faeth, G.M., “Effects of initial flow conditions on primary breakup of non-turbulent and turbulent round jets,” Atomization and Sprays 5 (1995) 175196.CrossRefGoogle Scholar
Tanner, F.X., “Liquid jet atomization and droplet breakup modelling of non-evaporating diesel fuel sprays,” Society of Automotive Engineers, SAE 97-0050.Google Scholar
Trinh, H.P., Chen, C.P., “Modelling of turbulence effects on liquid jet atomization and breakup,” AIAA 2005–0154.CrossRefGoogle Scholar
Renardy, Y., “Effect of startup conditions on drop breakup under shear with inertia,” Int. J. of Multiphase Flow 34 (2008) 11851189.CrossRefGoogle Scholar
Theofanous, T.G., Li, G.J., “On the physics of aerobreakup,” Phys. Fluids 20 (2008) 052103.CrossRefGoogle Scholar
Gadgil, H.P., Raghunandan, B.N., “Some features of spray breakup in effervescent atomizers,” Exp. in Fluids 50 (2011) 329338.CrossRefGoogle Scholar
Arienti, M., Shedd, T.A., Herrmann, M., Wang, L., Corn, M., Li, X., Soteriou, M.C., “Modeling wall film formation and breakup using an integrated interface-tracking/discrete-phase approach,” Journal of Engineering for Gas Turbines and Power 133 (3) (2011) 031501.CrossRefGoogle Scholar
Desjardins, O., Moureau, V., Pitsch, H., “An accurate conservative level set/ghost fluid method for simulating turbulent atomization,” J. Comp. Phys. 227 (2008) 83958416.CrossRefGoogle Scholar
Lebas, R., Menard, T., Beau, P.A., Berlemont, A., Demoulin, F.X., “Numerical simulation of primary break-up and atomization: DNS and modelling study,” Int. J. of Multiphase Flow 35 (2009) 247260.CrossRefGoogle Scholar
Zeng, P., Sarholz, S., Iwainsky, C., Binninger, B., Peters, N., Herrmann, M., “Simulation of primary breakup for diesel spray with phase transition,” in Recent Advances in Parallel Virtual Machine and Message Passing Interface, 2009, pp. 313–320.CrossRefGoogle Scholar
Shinjo, J., Umemura, A., “Simulation of liquid jet primary breakup: Dynamics of ligament and droplet formation,” Int. J. of Multiphase Flow 36 (2010) 513532.CrossRefGoogle Scholar
Pascaud, S., Boileau, M., Cuenot, B., Poinsot, T., “Large eddy simulation of turbulent spray combustion in aeronautical gas turbines,” in ECCOMAS Thematic Conference on computational combustion, 2005, pp. 149–167.Google Scholar
Linne, M., Paciaroni, M., Hall, T., Parker, T., “Ballistic imaging of the near field in a diesel spray,” Exp Fluids 40 (2006) 836846.CrossRefGoogle Scholar
Desantes, J., Salvador, F., López, J., De la Morena, J., “Study of mass and momentum transfer in diesel sprays based on x-ray mass distribution measurements and on a theoretical derivation,” Exp Fluids 50 (2011) 233246.CrossRefGoogle Scholar
Reddemann, M.A., Mathieu, F., Kneer, R., “Transmitted light microscopy for visualizing the turbulent primary breakup of a microscale liquid jet,” Exp Fluids 54 (2013) 110.CrossRefGoogle Scholar
Presser, C., Gupta, A.K., Semerjian, H.G., “Aerodynamic characteristics of swirling spray flames: Pressure-jet atomizer,” Combust. Flame 92 (1993) 2544.CrossRefGoogle Scholar
Sornek, R.J., Dobashi, R., Hirano, T., “Effect of turbulence on vaporization, mixing, and combustion of liquid-fuel sprays,” Combust. Flame 120 (2000) 479491.CrossRefGoogle Scholar
Wang, H.Y., McDonell, V.G., Sowa, W.A., Samuelsen, G.S., “Scaling of the two-phase flow downstream of a gas turbine combustor swirl cup: Part I- mean quantities,” J. Eng. Gas Turbines Power 115 (1993) 453460.CrossRefGoogle Scholar
Bulzan, D.L., “Structure of a swirl-stabilized combusting spray,” J. Propul. Power 11 (1995) 10931102.CrossRefGoogle Scholar
Soltani, M.R., Ghorbanian, K., Ashjaee, M., Morad, M.R., “Spray characteristics of a liquid–liquid coaxial swirl atomizer at different mass flow rates,” Aero. Sci. Tech. 9 (2005) 592604.CrossRefGoogle Scholar
Cai, J., Jeng, S.-M., Tacina, R., “The structure of a swirl-stabilized reacting spray issued from an axial swirler,” AIAA 2005-1424 (2005) 1–16.Google Scholar
Hadef, R., Lenze, B., “Effects of co- and counter-swirl on the droplet characteristics in a spray flame,” Chem. Engg. Process. 47 (2008) 22092217.CrossRefGoogle Scholar
Tratnig, A., Brenn, G., “Drop size spectra in sprays from pressure-swirl atomizers,” Int. J. of Multiphase Flow 36 (2010) 349363.CrossRefGoogle Scholar
Takahashi, F., Schmoll, W.J., Switzer, G.L., Shouse, D.T., “Structure of a spray flame stabilized on a production engine combustor swirl cup,” Symposium (International) on Combustion 25 (1994) 183191.CrossRefGoogle Scholar
Al-Abdeli, Y.M., Masri, A.R., “Turbulent swirling natural gas flames: Stability characteristics, unsteady behavior and vortex breakdown,” Combust. Sci. Technol. 179 (2007) 207225.CrossRefGoogle Scholar
Sommerfeld, M., Qiu, H.-H., “Detailed measurements in a swirling particulate two-phase flow by a phase-doppler anemometer,” Int. J. of Heat and Fluid Flow 12 (1991) 2028.CrossRefGoogle Scholar
Zurlo, J., Presser, C., Semerjian, H., Gupta, A., “Determination of droplet characteristics in spray flames using three different sizing techniques,” in AIAA, SAE, ASME, and ASEE, 27th Joint Propulsion Conference, Vol. 1, 1991.Google Scholar
Kenny, R.J., Hulka, J.R., Moser, M.D., Rhys, N.O., “Effect of chamber backpressure on swirl injector fluid mechanics,” J. Propul. Power 25 (2009) 902913.CrossRefGoogle Scholar
Albrecht, H.-E., Laser Doppler and Phase Doppler Measurement Techniques, Springer, 2003.CrossRefGoogle Scholar
Stenberg, J., Frederick, W., Boström, S., Hernberg, R., Hupa, M., “Pyrometric temperature measurement method and apparatus for measuring particle temperatures in hot furnaces: Application to reacting black liquor,” Review of Scientific Instruments 67 (1996) 19761984.CrossRefGoogle Scholar
Sutton, J.A., Driscoll, J.F., “A method to simultaneously image two-dimensional mixture fraction, scalar dissipation rate, temperature and fuel consumption rate fields in a turbulent non-premixed jet flame,” Exp Fluids 41 (2006) 603627.CrossRefGoogle Scholar
Roy, S., Gord, J.R., Patnaik, A.K., “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: Fundamental developments and applications in reacting flows,” Prog. Energy. Comb. Sci. 36 (2010) 280306.CrossRefGoogle Scholar
Boileau, M., Pascaud, S., Riber, E., Cuenot, B., Gicquel, L., Poinsot, T., “Investigation of two-fluid methods for large eddy simulation of spray combustion in gas turbines,” Flow Turbulence Combust. 80 (2008) 351373.CrossRefGoogle Scholar
Riber, E., Moureau, V., García, M., Poinsot, T., Simonin, O., “Evaluation of numerical strategies for large eddy simulation of particulate two-phase reacting flows,” J. Comp. Phys. 228 (2009) 539564.CrossRefGoogle Scholar
Desantes, J.M., Pastor, J.V., Garciá-Oliver, J.M., Pastor, J.V., “A 1D model for the description of mixing-controlled reacting diesel sprays,” Combust. Flame 156 (2009) 234249.CrossRefGoogle Scholar
Senoner, J.M., Sanjosé, M., Lederlin, T., Jaegle, F., Garćia, M., Riber, E., Cuenot, N., Gicquel, L., Pitsch, H., Poinsot, T., “Eulerian and Lagrangian large-eddy simulations of an evaporating two-phase flow,” C. R. Mecanique 337 (2009) 458468.CrossRefGoogle Scholar
Sanjosé, M., Riber, E., Gicquel, L., Cuenot, B., Poinsot, T., “Large eddy simulation of a two-phase reacting flow in an experimental burner,” in Direct and Large-Eddy Simulation VII, Springer, 2010, pp. 345351.CrossRefGoogle Scholar
Hank, S., Saurel, R., Metayer, O.L., “A hyperbolic Eulerian model for dilute two-phase suspensions,” J. Modern Phys. 2 (2011) 9971011.CrossRefGoogle Scholar
Kollmann, W., Kennedy, I.M., “Les model for the particulate phase in sprays,” AIAA 97-0369 (1997) 111.Google Scholar
Caraeni, D., Bergström, C., Fuchs, L., “Modeling of liquid fuel injection, evaporation and mixing in a gas turbine burner using large eddy simulations,” Flow Turbulence Combust. 65 (2000) 223244.CrossRefGoogle Scholar
Sankaran, V., Menon, S., “Vorticity-scalar alignments and small-scale structures in swirling spray combustion,” Proc. Combust. Inst. 29 (2002) 577584.CrossRefGoogle Scholar
James, S., Zhu, J., Anand, M.S., “Large-eddy simulation as a design tool for gas turbine combustion systems,” AIAA J. 44 (2006) 674686.CrossRefGoogle Scholar
Menon, S., Patel, N., “Subgrid modeling for simulation of spray combustion in large-scale combustors,” AIAA J. 44 (2006) 709723.CrossRefGoogle Scholar
Kuang, S.B., Yu, A.B., Zou, Z.S., “A new point-locating algorithm under three-dimensional hybrid meshes,” Int. J. of Multiphase Flow 34 (2008) 10231030.CrossRefGoogle Scholar
Yan, Y., Zhao, J., Zhang, J., Liu, Y., “Large-eddy simulation of two-phase spray combustion for gas turbine combustors,” Applied Thermal Engineering 28 (11) (2008) 13651374.CrossRefGoogle Scholar
Lederlin, T., Pitsch, H., “Large-eddy simulation of an evaporating and reacting spray,” in Center for Turbulence Research: Annual Research Briefs, 2008, pp. 479–490.Google Scholar
Pozorski, J., Apte, S.V., “Filtered particle tracking in isotropic turbulence and stochastic modeling of subgrid-scale dispersion,” Int. J. of Multiphase Flow 35 (2009) 118128.CrossRefGoogle Scholar
Srinivasan, S., Smith, A.G., Menon, S., “Accuracy, reliability and performance of spray combustion models in LES,” in Quality and Reliability of Large-Eddy Simulations II, Springer, 2011, pp. 211220.CrossRefGoogle Scholar
Li, K., Zhou, L.X., “Studies of the effect of spray inlet conditions on the flow and flame structures of ethanol-spray combustion by large-eddy simulation,” Numerical Heat Transfer, Part A: Applications 62 (1) (2012) 4459.Google Scholar
Franzelli, B., V.A., Fiorina, B., Darabiha, N., “Large eddy simulation of swirling kerosene/air spray flame using tabulated chemistry,” Proceedings of the ASME Turbo Exposition GT2006-90974 (2013) 1–10.Google Scholar
Chrigui, M., Masri, A.R., Sadiki, A., Janicka, J., “Large eddy simulation of a polydisperse ethanol spray flame,” Flow Turbulence Combust. 90 (2013) 813832.CrossRefGoogle Scholar
Jones, W.P., Marquis, A.J., Vogiatzaki, K., “Large-eddy simulation of spray combustion in a gas turbine combustor,” Combust. Flame 161 (2014) 222239.CrossRefGoogle Scholar
Arienti, M., Li, X., Soteriou, M.C., Eckett, C.A., Jensen, R., “Coupled level-set/volume-of-fluid method for the simulation of liquid atomization in propulsion device injectors,” AIAA 2010–7136 (2010) 1–10.Google Scholar
Li, X., Arienti, M., Soteriou, M.C., Sussman, M.M., “Towards an efficient, high-fidelity methodology for liquid jet atomization computations,” AIAA 2010–210 (2010) 1–16.Google Scholar
Mortensen, M., Bilger, R.W., “Derivation of the conditional moment closure equations for spray combustion,” Combust. Flame 156 (2009) 6272.CrossRefGoogle Scholar
Laurent, C., Lavergne, G., Villedieu, P., “Quadrature method of moments for modeling multi-component spray vaporization,” Int. J. of Multiphase Flow 36 (2010) 5159.CrossRefGoogle Scholar
Jones, W.P., Lyra, S., Navarro-Martinez, S., “Large eddy simulation of a swirl stabilized spray flame,” Proc. Combust. Inst. 33 (2011) 21532160.CrossRefGoogle Scholar
Jones, W.P., Lyra, S., Navarro-Martinez, S., “Numerical investigation of swirling kerosene spray flames using large eddy simulation,” Combust. Flame 159 (2012) 15391561.CrossRefGoogle Scholar
Vié, A., Jay, S., Cuenot, B., Massot, M., “Accounting for polydispersion in the Eulerian large eddy simulation of the two-phase flow in an aeronautical-type burner,” Flow Turbulence Combust. 90 (2013) 545581.CrossRefGoogle Scholar
Elghobashi, S., “On predicting particle-laden turbulent flows,” Appl. Sci. Res. 52 (1994) 309329.CrossRefGoogle Scholar
Loth, E., “Numerical approaches for motion of dispersed particles, droplets and bubbles,” Prog Energy Combust Sci 26 (2000) 161223.CrossRefGoogle Scholar
Balachandar, S., Eaton, J.K., “Turbulent dispersed multiphase flow,” Annual Review of Fluid Mechanics 42 (2010) 111133.CrossRefGoogle Scholar
Druzhinin, O.A., Elghobashi, S., “Direct numerical simulations of bubble-laden turbulent flows using the two-fluid formulation,” Phys. Fluids 10 (1998) 685697.CrossRefGoogle Scholar
Druzhinin, O.A., Elghobashi, S., “On the decay rate of isotropic turbulence laden with microparticles,” Phys. Fluids 11 (1999) 602610.CrossRefGoogle Scholar
Réveillon, J., Massot, M., Péra, C., “Analysis and modeling of the dispersion of vaporizing polydispersed sprays in turbulent flows,” in Proceedings of the Summer Program, 2002, pp. 393–404.Google Scholar
Riley, J.J., Patterson, G.S., “Diffusion experiments with numerically integrated isotropic turbulence,” Phys. Fluids 17 (1974) 292297.CrossRefGoogle Scholar
Dukowicz, K., J., “A particle-fluid numerical model for liquid sprays,” J. Comp. Phys. 35 (1980) 229253.CrossRefGoogle Scholar
Maxey, M.R., “The gravitational settling of aerosol particles in homogeneous turbulence and random flow fields,” J. Fluid Mech. 174 (1987) 441465.CrossRefGoogle Scholar
Elghobashi, S., “Particle-laden turbulent flows: Direct simulation and closure models,” Appl. Sci. Res. 48 (1991) 301314.CrossRefGoogle Scholar
Selle, L., Lartigue, G., Poinsot, T., Kaufman, P., Krebs, W., Veynante, D., “Large-eddy simulation of turbulent combustion for gas turbines with reduced chemistry,” in Proceedings of the Summer Program, 2002, pp. 333–344.Google Scholar
Ham, F., Apte, S., Iaccarino, G., Wu, X., Herrmann, M., Constantinescu, G., Mahesh, K., Moin, P., “Unstructured LES of reacting multiphase flows in realistic gas turbine combustors,” in Center of Turbulence Research Annual Research Briefs, 2003, pp. 139–160.Google Scholar
Williams, F.A., “Spray, combustion and atomization,” Physics of Fluids 1 (1958) 541545.CrossRefGoogle Scholar
Ranjan, R., “A novel state-space based method for direct numerical simulation of particle-laden turbulent flows,” Ph.D. thesis, University of Illinois at Urbana-Champaign (2013).Google Scholar
Candy, J., “A numerical method for solution of the generalized liouville equation,” J. Comp. Phys. 129 (1) (1996) 160169.CrossRefGoogle Scholar
Mura, A., Borghi, R., “Introducing a new partial PDF approach for turbulent combustion modeling,” Combust. Flame 136 (2004) 377382.CrossRefGoogle Scholar
Xiu, D.B., Karniadakis, G.E., “The wiener-askey polynomial chaos for stochastic differential equations,” SIAM J. Scientific Computing 24 (2002) 619644.CrossRefGoogle Scholar
Marchisio, D.L., Fox, R., “Solution of population balance equations using the direct quadrature method of moments,” Journal of Aerosol Science 36 (2005) 4373.CrossRefGoogle Scholar
Pantano, C., Shotorban, B., “Least-squares dynamic approximation method for evolution of uncertainty in initial conditions of dynamical systems,” Physical Review E 76 (2007) 066705.CrossRefGoogle ScholarPubMed
Beale, J.C., Reitz, R.D., “Modeling spray atomization with the Kelvin–Helmholtz/Rayleigh–Taylor hybrid model,” Atomization and Sprays 9 (6).Google Scholar
O’Rourke, P.J., Amsden, A.A., “The TAB method for numerical calculation of spray droplet breakup,” Society of Automotive Engineers, SAE 87-2089.Google Scholar
Ra, Y., Reitz, R.D., “A vaporization model for discrete multi-component fuel sprays,” Int. J. of Multiphase Flow 35 (2009) 101117.CrossRefGoogle Scholar
Amsden, A.A., “KIVA-3V: Release 2, improvements to KIVA-3V,” Los Alamos Report No. LA-UR-99-915, 1999.Google Scholar
Reitz, R.D., “Modelling atomization processes in high-pressure vaporizing sprays,” Atomization and Spray Technology 3 (1987) 309337.Google Scholar
Rachner, M., Becker, J., Hassa, C., Doerr, T., “Modelling of the atomization of a plain liquid fuel jet in crossflow at gas turbine conditions,” Aerospace Science and Technology 6 (7) (2002) 495506.CrossRefGoogle Scholar
Faeth, G.M., “Spray combustion phenomena,” Proc. Combust. Inst. 26 (1996) 15931612.CrossRefGoogle Scholar
Liu, A.B., Mather, D., Reitz, R.D., “Modeling the effects of drop drag and breakup on fuel sprays,” NASA STI/Recon Technical Report N 93 (1993) 29388.Google Scholar
Abgrall, R., Saurel, R., “Discrete equations for physical and numerical compressible multiphase mixtures,” J. Comp. Phys. 186 (2) (2003) 361396.CrossRefGoogle Scholar
Chinnayya, A., Daniel, E., Saurel, R., “Modelling detonation waves in heterogeneous energetic materials,” J. Comp. Phys. 196 (2) (2004) 490538.CrossRefGoogle Scholar
Papalexandris, M.V., “Numerical simulation of detonations in mixtures of gases and solid particles,” J. Fluid Mech. 507 (2004) 95142.CrossRefGoogle Scholar
Oefelein, J.C., “Large eddy simulation of turbulent combustion processes in propulsion and power systems,” Progress in Aerospace Sciences 42 (1) (2006) 237.CrossRefGoogle Scholar
Balakrishnan, K., Nance, D.V., Menon, S., “Simulation of impulse effects from explosive charges containing metal particles,” Shock Waves 20 (3) (2010) 217239.CrossRefGoogle Scholar
Gottiparthi, K., Menon, S., “A study of interaction of clouds of inert particles with detonation in gases,” Combust. Sci. Technol. 184 (3) (2012) 406433.CrossRefGoogle Scholar
Jenny, P., Roekaerts, D., Beishuizen, N., “Modeling of turbulent dilute spray combustion,” Prog. Energy. Comb. Sci. 38 (2012) 846887.CrossRefGoogle Scholar
Crowe, C.T., Schwarzkopf, J.D., Sommerfeld, M., Tsuji, Y., Multiphase Flows with Droplets and Particles, CRC Press, 2011.CrossRefGoogle Scholar
Balakrishnan, K., Menon, S., “Characterization of the mixing layer resulting from the detonation of heterogeneous explosive charges,” Flow Turbulence Combust. 87 (4) (2011) 639671.CrossRefGoogle Scholar
Baer, M.R., Nunziato, J.W., “A two-phase mixture theory for the deflagration-to-detonation transition (ddt) in reactive granular materials,” Int. J. of Multiphase Flow 12 (6) (1986) 861889.CrossRefGoogle Scholar
Bini, M., Jones, W., “Particle acceleration in turbulent flows: A class of nonlinear stochastic models for intermittency,” Phys. Fluids 19 (2007) 035104.CrossRefGoogle Scholar
Génin, F., Menon, S., “Studies of shock/turbulent shear layer interaction using large-eddy simulation,” Computers & Fluids 39 (5) (2010) 800819.CrossRefGoogle Scholar
Smagorinsky, J., “General circulation experiments with the primitive equations,” Monthly Weather Review 91 (3) (1993) 99164.2.3.CO;2>CrossRefGoogle Scholar
Germano, M., Piomelli, U., Moin, P., Cabot, W.H., “A dynamic subgrid-scale eddy viscosity model,” Physics of Fluids A 3 (11) (1991) 17601765.CrossRefGoogle Scholar
Menon, S., Kim, W.-W., “High reynolds number flow simulations using the localized dynamic subgrid-scale model,” AIAA-96-0425.Google Scholar
Kim, W.-W., Menon, S., A new incompressible solver for large-eddy simulations, International Journal of Numerical Fluid Mechanics 31 (1999) 9831017.3.0.CO;2-Q>CrossRefGoogle Scholar
Kim, W.-W., Menon, S., Mongia, H. C., Large-eddy simulation of a gas turbine combustor flow, Combustion Science and Technology 143 (1999) 2562.CrossRefGoogle Scholar
Faeth, G. M., Mixing, transport and combustion in sprays, Progress in Energy and Combustion Science 13 (1987) 293345.CrossRefGoogle Scholar
Menon, S., Pannala, S., Subgrid modeling of unsteady two-phase turbulent flows, AIAA Paper No. 97-3113.Google Scholar
Kerstein, A. R., Linear-eddy model of turbulent scalar transport and mixing, Combustion Science and Technology 60 (1988) 391421.CrossRefGoogle Scholar
Menon, S., McMurtry, P., Kerstein, A. R., A linear eddy mixing model for large eddy simulation of turbulent combustion, in: Galperin, B., Orszag, S. (Eds.), LES of Complex Engineering and Geophysical Flows, Cambridge University Press, 1993, pp. 287314.Google Scholar
Menon, S., Kerstein, A. R., The linear-eddy model, Turbulent Combustion Modeling 95 (2011) 175222.Google Scholar
Apte, S. V., Moin, P., Large-eddy simulation of realistic gas turbine combustor, AIAA J. 44 (2006) 698708.Google Scholar
Knudsen, E., Pitsch, H., Large-eddy simulation for combustion systems: Modeling approaches for partially premixed flows, The Open Thermodynamics Journal 4 (2010) 7685.Google Scholar
Hicks, Y. R., Anderson, R. C., Locke, R. J., Optical measurements in a combustor using a 9-point swirl-venturi fuel injector, Isabe 2007-1280 (2007).Google Scholar

References

Frost, D.L., Gregoire, Y., Petel, O., Goroshin, S., and Zhang, F.. “Particle jet formation during explosive dispersal of solid particles.” Physics of Fluids, 24:091109, 2012.CrossRefGoogle Scholar
Kuhl, A.L., Ferguson, R.E., and Oppenheim, A.K.. “Gasdynamic model of turbulent exothermic fields in explosions.” Progress in Astronautics and Aeronautics, 173:251261, 1997.Google Scholar
Taylor, G.I.. “The instability of liquid surfaces when accelerated in a direction perpendicular to their planes.” Proceedings of Royal Society of London. Series A, Mathematical and Physical Sciences, 201:192196, 1950.Google Scholar
Balakrishnan, K.. On the High Fidelity Simulation of Chemical Explosions and their Interaction with Solid Particle Clouds. PhD thesis, Georgia Institute of Technology, 2010.Google Scholar
Richtmyer, R.D.. “Taylor instability in shock acceleration of compressible fluids.” Commun. Pure Appl. Math., 13(297), 1960.CrossRefGoogle Scholar
Balakrishnan, K. and Menon, S.. “On the role of ambient reactive particles in the mixing and afterburn behind explosive blast waves.” Combust. Sci. Technol., 182(2):186214, 2010.CrossRefGoogle Scholar
Menon, S. and Patel, N.. “Subgrid modeling for simulation of spray combustion in large-scale combustors.” AIAA Journal, 44:709723, 2006.CrossRefGoogle Scholar
Génin, F. and Menon, S.. “Studies of shock / turbulent shear layer interaction using large-eddy simulation.” Computers & Fluids, 39:800819, 2010.CrossRefGoogle Scholar
Oefelein, J.C.. “Large eddy simulation of turbulent combustion processes in propulsion and power systems.” Progress in Aerospace Sciences, 42:237, 2006.CrossRefGoogle Scholar
Balakrishnan, K. and Menon, S.. “On turbulent chemical explosions into dilute aluminum particle clouds.” Combust. Theor. Model., 14(4):583617, 2010.CrossRefGoogle Scholar
Balakrishnan, K. and Menon, S.. “Characterization of the mixing layer resulting from the detonation of heterogeneous explosive charges.” Flow Turbul. Combust., 87:639671, 2011.CrossRefGoogle Scholar
White, F. M.. Viscous Fluid Flow, third edition. McGraw-Hill, 2006.Google Scholar
Sagaut, P.. Large Eddy Simulation for Incompressible Flows. Springer Verlag, 2001.CrossRefGoogle Scholar
Smagorinsky, J.. “General circulation experiments with the primitive equations. I: The basic experiment.” Month. Weath. Rev., 91:99165, 1963.2.3.CO;2>CrossRefGoogle Scholar
Germano, M., Piomelli, U., Moin, P., and Cabot, W.H.. “A dynamic subgrid–scale eddy viscosity model.” Phys. Fluids A, 3:17601765, 1991.CrossRefGoogle Scholar
Yoshizawa, A. and Horiuti, K.. “A statistically–derived subgrid scale kinetic energy model for large eddy simulation of turbulent flows.” J. Phys. Soc. Japan, 54:2834, 1985.CrossRefGoogle Scholar
Kim, W.W. and Menon, S.. “A new in-compressible solver for large-eddy simulations.” International Journal for Numerical Methods in Fluid Mechanics, 31:9831017, 1999.3.0.CO;2-Q>CrossRefGoogle Scholar
Génin, F. and Menon, S.. “Dynamics of sonic jet injection into supersonic crossflow.” J. Turbul., 11(4):130, 2010.CrossRefGoogle Scholar
Fureby, C. and Moller, S.I.. “Large-eddy simulations of reacting flows applied to bluff-body stabilized flames.” AIAA Journal, 33:2339, 1995.CrossRefGoogle Scholar
Cook, A.W. and Cabot, W.H.. “Hyperviscosity for shock–turbulence interactions.” J. Comp. Phys., 203:379385, 2005.CrossRefGoogle Scholar
von Neumann, J. and Richtmyer, R.D.. “A method for the numerical calculations of hydrodynamical shocks.” J. Appl. Phys., 21:232237, 1950.CrossRefGoogle Scholar
Caramana, E.J., Shashkov, M.J., and Whalen, P.P.. “Formulations of artificial viscosity for multi-dimensional shock wave computations.” J. Comp. Phys., 144:7097, 1998.CrossRefGoogle Scholar
Boris, J.P.. “Whither turbulence? Turbulence at crossroads,” in On Large Eddy Simulation Using Subgrid Turbulence Models, 344. Springer, 1990.Google Scholar
Boris, J.P., Grinstein, F.F., Oran, E.S., and Kolbe, R.J.. “New insights into large eddy simulation.” Fluid Dynamics Research, 10:199, 1992.CrossRefGoogle Scholar
Grinstein, F.F., Margolin, L., and Rider, B., editors. Implicit Large Eddy Simulation: Computing Turbulent Fluid Dynamics. Cambridge University Press, 2007.CrossRefGoogle Scholar
Grinstein, F.F. and Fureby, C.. “On flux–limiting–based implicit large eddy simulation.” ASME J. Fluids Engng., 129:1483, 2007.CrossRefGoogle Scholar
Drikakis, D., Hahn, M., Grinstein, F.F., DeVore, C.R., Fureby, C., Liefvendahl, M., and Youngs, D.L.. Numerics for ILES: Limiting Algorithms, chapter 4a. Cambridge University Press, 2007.CrossRefGoogle Scholar
Zukas, J.A. and Walters, W.P.. Explosive Effects and Applications. Springer, 1998.CrossRefGoogle Scholar
Cowperthwaite, M.. “Significance of some equations of state obtained from shock-wave data.” American Journal of Physics, 34:10251030, 1966.CrossRefGoogle Scholar
Donahue, L., Zhang, F., and Ripley, R.C.. “Numerical models for afterburning of TNT detonation products in air.” Shock Waves, 23:559573, 2013.CrossRefGoogle Scholar
Johnston, I.A.. “The Noble–Able equation of state: Thermodynamic derivations for ballistic modeling.” Technical Report DSTO-TN-0670, Australian Government Department of Defence, Defence Science and Technology Organisation, 2005.Google Scholar
Kim, C.K., Moon, J.G., Hwang, J.S., Lai, M.C., and Im, K.S.. “Afterburning of TNT explosive products in air with aluminum articles.” AIAA paper 2008-1029, 2008.CrossRefGoogle Scholar
Grinstein, F.F. and Kailasanath, K.. “Three-dimensional numerical simulation of unsteady reactive square jets.” Comb. & Flame, 100:2, 1995.CrossRefGoogle Scholar
Magnussen, B.F.. “On the structure of turbulence and generalized eddy dissipation concept for chemical reactions in turbulent flow.” 19th AIAA Aerospace Meeting, 1981.CrossRefGoogle Scholar
Berglund, M., Fedina, E., Fureby, C., Tegner, J., and Sabel’nikov, V.. “Finite rate chemistry large–eddy simulation of self-ignition in a supersonic combustion ramjet.” AIAA Journal, 48:540550, 2010.CrossRefGoogle Scholar
Sabelnikov, V. and Fureby, C.. Extended LES-PaSR Model for Simulation of Turbulent Combustion, volume 4, pages 156–169. 2012. In Advances in Aerospace Sciences.CrossRefGoogle Scholar
Sabelnikov, V. and Fureby, C.. “LES combustion modeling for high Re flames using multi-phase analogy.” Comb. Flame, 160:83, 2013.CrossRefGoogle Scholar
Balakrishnan, K., Nance, D.V., and Menon, S.. “Simulation of impulse effects from explosive charges containing metal particles.” Shock Waves, 20:217239, 2010.CrossRefGoogle Scholar
Balakrishnan, K., Ukai, S., and Menon, S.. “Clustering and combustion of dilute aluminum particle clouds in a post-detonation flow field.” Proc. Combust. Inst., 33:22552263, 2011.CrossRefGoogle Scholar
Schwer, D.A. and Kailasanath, K.. “Numerical simulations of the mitigation of unconfined explosions using water mist.” Proceedings of the Combustion Institute, 31:23612369, 2007.CrossRefGoogle Scholar
Fedina, E. and Fureby, C.. “A comparative study of flamelet and finite rate chemistry LES for an axisymmetric dump combustor.” J. Turb., 12:120, 2010.Google Scholar
Tanahashi, M., Fujimura, M., and Miyauchi, T.. “Coherent fine scale eddies in turbulent premixed flames.” Proceedings of the 28th International Symposium on Combustion, 579–587, 2000.CrossRefGoogle Scholar
Yeung, P.K., Pope, S.B., and Sawford, B.L.. “Reynolds number dependence of lagrangian statistics in large numerical simulations of isotropic turbulence.” J. Turb., 7:N58, 2006.CrossRefGoogle Scholar
Snider, D.M.. “An incompressible three-dimensional multiphase particle-in-cell model for dense particle flows.” Journal of Computational Physics, 170:523549, 2001.CrossRefGoogle Scholar
Patankar, N.A. and Joseph, D.D.. “Modeling and numerical simulation of particulate flows by the Eulerian–Lagrangian approach.” International Journal of Multiphase Flow, 27:16591684, 2001.CrossRefGoogle Scholar
Gottiparthi, K. C. and Menon, S.. “A study of interaction of clouds of inert particles with detonation in gases.” Combustion Science and Technology, 184(3):406433, 2012.CrossRefGoogle Scholar
Gottlieb, S. and Shu, C.-W.. “Total variation diminishing Runge–Kutta schemes.” Mathematics of Computation, 67:7385, 1998.CrossRefGoogle Scholar
Abgrall, R. and Saurel, R.. “Discrete equations for physical and numerical compressible multiphase mixtures.” Journal of Computational Physics, 186(2):361396, 2003.CrossRefGoogle Scholar
Chinnayya, A., Daniel, E., and Saurel, R.. “Modelling detonation waves in heterogeneous energetic materials.” Journal of Computational Physics, 196:490538, 2004.CrossRefGoogle Scholar
Toro, E.F.. Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. Addison-Wesley Publishing Company, 1999.CrossRefGoogle Scholar
Akhatov, I.S. and Vainshtein, P.B.. “Transition of porous explosive combustion into detonation.” Combustion Explosions and Shock Waves, 20(1):6369, 1984.CrossRefGoogle Scholar
Bazyn, T., Krier, H., and Glumac, N.. “Evidence for the transition from the diffusion–limit in aluminum particle combustion.” Proc. Comb. Inst, 31:20212028, 2007.CrossRefGoogle Scholar
Corcoran, A.L., Hoffmann, V.K., and Dreizin, E.L.. “Aluminum particle combustion in turbulent flames.” Comb. & Flame, 160:718724, 2013.CrossRefGoogle Scholar
Yetter, R.A., Risha, G.A., and Son, S.F.. “Metal particle combustion and nanotechnology.” Proc. Comb. Inst., 32:18191838, 2009.CrossRefGoogle Scholar
Servaites, J., Krier, H., and Melcher, J.C.. “Ignition and combustion of aluminum particles in shocked //Ar and //ar mixtures.” Comb. & Flame, 125:10401054, 2001.CrossRefGoogle Scholar
Badiola, C., Gill, R.J., and Drezin, E.L.. “Combustion characteristics of micron-sized aluminum particles in oxygenated environments.” Comb. & Flame, 158:20642070, 2011.CrossRefGoogle Scholar
Lynch, P., Krier, H., and Glumac, N.. “A correlation for burn time of aluminum particles in the transition regime.” Proc. Comb. Inst., 32:18871893, 2009.CrossRefGoogle Scholar
Gill, R.J., Badiola, C., and Drezin, E.L.. “Combustion times and emission profiles of micron-sized aluminum particles burning in different environments.” Comb. & Flame, 157:20152023, 2010.CrossRefGoogle Scholar
Beckstead, M.W.. “Correlating aluminum burning times.” Comb. Explosion and Shock Waves, 41:533546, 2005.CrossRefGoogle Scholar
Zhang, F., Frost, F.D., Thibault, P.A., and Murray, S.B.. “Explosive dispersal of solid particles.” Shock Waves, 10:431443, 2001.CrossRefGoogle Scholar
Balakrishnan, K., Nance, D.V., and Menon, S.. “Numerical study of blast characteristics from detonation of homogeneous explosives.” Shock Waves, 20:147162, 2010.CrossRefGoogle Scholar
Youngs, D.L. and Williams, R.J.R.. “Turbulent mixing in spherical implosions.” Intl. J. Numer. Meth. Fluids, 56:15971603, 2008.CrossRefGoogle Scholar
Gottiparthi, K.C. and Menon, S.. “Simulations of heterogeneous detonations and post detonation turbulent mixing and afterburning.” AIP Conference Proceedings, 1426:16391642, 2012.CrossRefGoogle Scholar
Kuhl, A.L.. “Dynamics of Exothermicity,” in Spherical Mixing Layers in Explosions. Gordon and Breach Science Publishers SA, 1996.Google Scholar
Frost, D.L., Zarei, Z., and Zhang, F.. “Instability of combustion products interface from detonation of heterogeneous explosives.” 20th International Colloquium on the Dynamics of Explosions and Reactive Systems, Montreal, Canada, 2005.Google Scholar
Kuhl, A.L., Oppenheim, A.K. Ferguson, R.E., and Seizew, M.R.. “Visualisation of mixing and combustion of TNT explosions.” Extreme States of Substance Detonation Shock Waves, February 26–March 3, Sarov, Nizhni Novgorod Region, Russia, 2001.Google Scholar
Kuhl, A.L., Fergusson, R.E., and Oppenheim, A.K.. “Gasdynamics of combustion of TNT products in air.” Archivum Combustionis, 19:6789, 1999.Google Scholar
Kuhl, A.L., Howard, M., and Fried, L.. “Thermodynamic model of afterburning in explosions.” 34th International ICT Conference: Energetic Materials: Reactions of Propellants, Explosives and Pyrotechnics, June 24–27, Karlsruhe, Germany, 2003.Google Scholar
Bell, J.B., Beckner, V.E., and Kuhl, A.L.. Simulation of Enhanced–Explosive Devices in Chambers and Tunnels. HPCMP Users Group Conference, IEEE, 2007.Google Scholar
Kuhl, A.L., Bell, J.B., Beckner, V.E., and Khasainov, B.. “Simulation of aluminum combustion and PETN afterburning in confined explosions.” 21st International Colloquim on the Dynamics of Explosions and Reactive Systems (ICDERS), July 23–27, Poitiers, France, 2007.Google Scholar
Tran, T.D, Simpson, R.L., Maienschein, J., and Tarver, C.M.. “Thermal decomposition of trinitrotoluene (TNT) with a new one-dimensional time to explosion (ODTX) apparatus.” 32nd International Conference of Institute of Chemistry Technology, Karlsruhe, Germany, 2001.Google Scholar
Pitz, W.J. and Westbrook, C.K.. “A detailed chemical kinetic model for gas phase combustion of TNT.” Proc. Comb. Inst., 31:23432351, 2007.CrossRefGoogle Scholar
Weller, H.G., Tabor, G., Jasak, H., and Fureby, C.. “A tensorial approach to CFD using object oriented techniques.” Comp. in Physics, 12:620632, 1997.CrossRefGoogle Scholar
Meshkov, E.E.. “One approach to the experimental study of hydrodynamic instabilities: Creation of a gas–gas interface using the dynamic tecnique.” Proc. 5th International Workshop on Compressible Turbulent Mixing, 1996.Google Scholar
Fedina, E. and Fureby, C.. “Numerical simulation of afterburning during explosions.” 28th International Symposium on Shock Waves, July 17–22, 2562, 2012.CrossRefGoogle Scholar
Fedina, E. and Fureby, C.. “Investigating ground effects on mixing and afterburning during a TNT explosion.” Shock Waves, 23:251261, 2013.CrossRefGoogle Scholar
Beckstead, M.W., Liang, Y., and Pudduppakkam, K.V.. “Numerical simulation of single aluminum particle combustion (review).” Comb. Explosion and Shock Waves, 41:622638, 2005.CrossRefGoogle Scholar
Crowe, C., Sommerfeld, M., and Tsuji, Y.. Multiphase Flows with Droplets and Particles. CRC Press, 1998.Google Scholar
Gallier, S., Sibe, F., and Orlandi, O.. “Combustion response of an aluminum droplet burning in air.” Proc. Comb. Inst., 33:19491956, 2011.CrossRefGoogle Scholar
Liang, Y. and Beckstead, M.W.. “Numerical simulation of quasi–steady, single aluminum particle combustion in air.” AIAA 98–0254, 1998.Google Scholar
Glotov, O.G. and Zhukov, V.A.. “The evolution of m aluminum agglomerates and initially continuous aluminum particles in the flame of a model solid propellant.” II. results. Comb. Explosion & Shock Waves, 44:671680, 2008.CrossRefGoogle Scholar
Kuhl, A.L., Bell, J.B., and Becker, V.E.. “Heterogeneous continuum model of aluminum particle combustion in explosions.” Comb. Explosion and Shock Waves, 46:433448, 2010.CrossRefGoogle Scholar
Fedina, E.. “TNT/aluminium afterburning in air blasts.” Technical Report FOI-R–3913–SE, Swedish Defence Research Agency – FOI, 2014.Google Scholar
Fedina, E. and Fureby, C.. “Numerical simulations of TNT afterburning at different heights of blast.” 22nd International Symposium on Military Aspects on Blast and Shock (MABS22), November 4–9, Bourges, France, 2012.Google Scholar

References

Sagaut, P. 2006, Large Eddy Simulation for Incompressible Flows, 3rd ed., Springer.Google Scholar
Grinstein, F.F., Margolin, L.G., and Rider, W.J., eds., 2010, Implicit Large Eddy Simulation: Computing Turbulent Fluid Dynamics, 2nd printing, Cambridge University Press.Google Scholar
George, W.K., and Tutkun, M., 2009, “Mind the gap: A guideline for large eddy simulation,” Phil. Trans. R. Soc. A, 367, 2839–47.CrossRefGoogle Scholar
Grinstein, F.F., 2009, “On integrating large eddy simulation and laboratory turbulent flow experiments,” Phil. Trans. R. Soc. A, 367, 2931–45CrossRefGoogle ScholarPubMed
Cohen, R.H., Dannevik, W.P., Dimits, A.M., Eliason, D.E., Mirin, A.A., Zhou, Y., Porter, D.H., and Woodward, P.R., 2002, “Three-dimensional simulation of a Ritchmyer-Meshkov instability with a two-scale initial perturbation,” Physics of Fluids, 14, 3692–709.CrossRefGoogle Scholar
Drikakis, D., Fureby, C., Grinstein, F.F., and Youngs, D., 2007, “Simulation of transition and turbulence decay in the Taylor–Green Vortex,” Journal of Turbulence, 8, 020CrossRefGoogle Scholar
Wachtor, A.J., Grinstein, F.F., Devore, C.R., Ristorcelli, J.R., and Margolin, L.G., 2013, “Implicit large-eddy simulations of passive scalar mixing in statistically stationary isotropic turbulence,” Physics of Fluids, 25, 025101.CrossRefGoogle Scholar
Zhou, Y., Grinstein, F.F., Wachtor, A.J., and Haines, B.M., 2014, “Estimating the effective Reynolds number in implicit large eddy simulation,” Phys. Review E, 89, 013303.CrossRefGoogle ScholarPubMed
Dimotakis, P.E., 2000, “The mixing transition in turbulent flows,” J. Fluid Mech., 409, 6998.CrossRefGoogle Scholar
Hirt, C.W., 1969, “Computer studies of time-dependent turbulent flows,” Phys. Fluids Suplement II, 219–227.CrossRefGoogle Scholar
Ghosal, S., 1996, “An analysis of numerical errors in large-eddy simulations of turbulence,” J. Comp Phys., 125, 187206.CrossRefGoogle Scholar
Townsend, A.A., 1976, Structure of Turbulent Shear Flow, Cambridge University Press.Google Scholar
George, W.K., and Davidson, L., 2004, “Role of initial conditions in establishing asymptotic flow behavior,” AIAA Journal, 42, 438446.CrossRefGoogle Scholar
Lorenz, E.N., 1963, “Deterministic nonperiodic flow,” J. of Atmospheric Sciences, 20, 130141.2.0.CO;2>CrossRefGoogle Scholar
Lorenz, E.N., 1972, “Predictability: Does the flap of a butterfly’s wings in Brazil set off a tornado in Texas,” American Association for the Advancement of Science Meeting, Washington DC, December, 29, 1972.Google Scholar
Spalart, P.R., 2000, “Strategies for turbulence modeling and simulations,” Heat and Fluid Flow, 21, 252263.CrossRefGoogle Scholar
Frolich, J., and von Terzi, D., 2008, “Hybrid LES/RANS methods for the simulation of turbulent flows,” Prog. Aerosp. Sci., 44, 349–77.Google Scholar
Leschziner, M., Li, N., and Tessicini, F., 2009, “Simulating flow separation from continuous surfaces: routes to overcoming the Reynolds number barrier,” Phil. Trans. R. Soc. A, 367, 28852903.CrossRefGoogle ScholarPubMed
Fasel, H.F., von Terzi, D.A., and Sandberg, R.D., 2006, “A methodology for simulating compressible turbulent flows,” J. Applied Mechanics, 73, 405412.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×