Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-qs9v7 Total loading time: 0 Render date: 2024-07-11T23:26:22.703Z Has data issue: false hasContentIssue false

17 - Relapsed acute lymphoblastic leukemia

from Part III - Evaluation and treatment

Published online by Cambridge University Press:  01 July 2010

Günter Henze
Affiliation:
Professor and Director, Pediatric Oncology/Hematology, Charité-Campus Virchow Klinikum, Augustenburger Platz, Berlin, Germany
Arend von Stackelberg
Affiliation:
Pediatric Oncology/Hematology, Charité-Campus Virchow Klinikum, Berlin, Germany
Ching-Hon Pui
Affiliation:
St. Jude Children's Research Hospital, Memphis
Get access

Summary

Introduction

With current treatment, event-free survival rates in acute lymphoblastic leukemia (ALL) are about 75%. Therefore, relapse of ALL is still frequent with an incidence range close to that of neuroblastoma. Problems in the management of ALL relapse are the resistance of the leukemic cells and the reduced tolerance of patients to a second round of treatment after having already received intensive frontline therapy, resulting in a lower remission rate as well as a higher incidence of subsequent relapse and an inferior outcome overall.

Intensified polychemotherapy is essential for induction of a second complete remission (CR). Depending on a variety of prognostic factors, remission may be maintained with chemotherapy and cranial irradiation alone or with intensification of treatment by stem cell transplantation.

Diagnosis of relapse

The diagnosis of ALL relapse (i.e. the reappearance of leukemic cells in any anatomic compartment following CR) must be unequivocal. The work-up includes a careful physical examination as well as investigations of the bone marrow (BM), the cerebrospinal fluid (CSF) and, if necessary, biopsies of other involved sites (e.g. the testicles, lymph nodes or any other organs or tissues). As at initial diagnosis, the leukemic cells have to be characterized morphologically and by immunophenotyping, as well as by cytogenetic and molecular genetic procedures. Only this comprehensive information, together with clinical findings, allows one to classify the leukemic subtype adequately and to assess the prognosis of individual patients.

Type
Chapter
Information
Childhood Leukemias , pp. 473 - 486
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Henze, G.Chemotherapy for relapsed childhood acute lymphoblastic leukemia. Int J Pediatr Hematol Oncol, 1997; 5: 199–213.Google Scholar
Gaynon, P. S., Qu, R. P., Chappell, R. J., et al.Survival after relapse in childhood acute lymphoblastic leukemia: impact of site and time to first relapse – the Children's Cancer Group experience. Cancer, 1998; 82: 1387–95.3.0.CO;2-1>CrossRefGoogle ScholarPubMed
Bennett, J. M., Catovsky, D., Daniel, M. T., et al.Proposals for the classification of the acute leukaemias. French-American-British (FAB) Co-operative Group. Br J Haematol, 1976; 33: 451–8.CrossRefGoogle ScholarPubMed
Löffler, H. & Gassmann, W.Morphology and cytochemistry of acute lymphoblastic leukaemia. Baillieres Clin Haematol, 1994; 7: 263–72.CrossRefGoogle ScholarPubMed
Steward, C. G., Goulden, N. J., Katz, F., et al.A polymerase chain reaction study of the stability of Ig heavy-chain and T-cell receptor delta gene rearrangements between presentation and relapse of childhood B-lineage acute lymphoblastic leukemia. Blood, 1994; 83: 1355–62.Google ScholarPubMed
Vora, A., Frost, L., Goodeve, A., et al.Late relapsing childhood lymphoblastic leukemia. Blood, 1998; 92: 2334–7.Google ScholarPubMed
Lo Nigro, L., Cazzaniga, G., Di Cataldo, A., et al.Clonal stability in children with acute lymphoblastic leukemia (ALL) who relapsed five or more years after diagnosis. Leukemia, 1999; 13: 190–5.CrossRefGoogle ScholarPubMed
Chessells, J. M., Leiper, A. D., & Richards, S. M.A second course of treatment for childhood acute lymphoblastic leukaemia: long-term follow-up is needed to assess results. Br J Haematol, 1994; 86: 48–54.CrossRefGoogle ScholarPubMed
Miniero, R., Saracco, P., Pastore, G., et al.Relapse after first cessation of therapy in childhood acute lymphoblastic leukemia: a 10-year follow-up study. Italian Association of Pediatric Hematology-Oncology (AIEOP). Med Pediatr Oncol, 1995; 24: 71–6.CrossRefGoogle Scholar
Rivera, G. K., Hudson, M. M., Liu, Q., et al.Effectiveness of intensified rotational combination chemotherapy for late hematologic relapse of childhood acute lymphoblastic leukemia. Blood, 1996; 88: 831–7.Google ScholarPubMed
Henze, G., Fengler, R., Hartmann, R., et al.Six-year experience with a comprehensive approach to the treatment of recurrent childhood acute lymphoblastic leukemia (ALL-REZ BFM 85). A relapse study of the BFM Group. Blood, 1991; 78: 1166–72.Google ScholarPubMed
Schroeder, H., Garwicz, S., Kristinsson, J., et al.Outcome after first relapse in children with acute lymphoblastic leukemia: a population-based study of 315 patients from the Nordic Society of Pediatric Hematology and Oncology (NOPHO). Med Pediatr Oncol, 1995; 25: 372–8.CrossRefGoogle Scholar
Wheeler, K., Richards, S., Bailey, C., & Chessells, J.Comparison of bone marrow transplant and chemotherapy for relapsed childhood acute lymphoblastic leukaemia: the MRC UKALL X experience. Medical Research Council Working Party on Childhood Leukaemia. Br J Haematol, 1998; 101: 94–103.CrossRefGoogle ScholarPubMed
Kuo, A. H., Yataganas, X., Galicich, J. H., Fried, J., & Clarkson, B. D.Proliferative kinetics of central nervous system (CNS) leukemia. Cancer, 1975; 36: 232–9.Google ScholarPubMed
Tsuchiya, J., Moteki, M., Shimano, S., et al.Proliferative kinetics of the leukemic cells in meningeal leukemia. Cancer, 1978; 42: 1255–62.3.0.CO;2-M>CrossRefGoogle ScholarPubMed
Jahnukainen, K., Saari, T., Salmi, T. T., Pollanen, P., & Pelliniemi, L. J.Reactions of Leydig cells and blood vessels to lymphoblastic leukemia in the rat testis. Leukemia, 1995; 9: 908–14.Google ScholarPubMed
Buchanan, G. R., Boyett, J. M., Pollock, B. H., et al.Improved treatment results in boys with overt testicular relapse during or shortly after initial therapy for acute lymphoblastic leukemia: a Pediatric Oncology Group study. Cancer, 1991; 68: 48–55.3.0.CO;2-X>CrossRefGoogle ScholarPubMed
Winick, N. J., Smith, S. D., Shuster, J., et al.Treatment of CNS relapse in children with acute lymphoblastic leukemia:a Pediatric Oncology Group study. J Clin Oncol, 1993; 11: 271–8.CrossRefGoogle ScholarPubMed
Ribeiro, R. C., Rivera, G. K., Hudson, M., et al.An intensive re-treatment protocol for children with an isolated CNS relapse of acute lymphoblastic leukemia. J Clin Oncol, 1995; 13: 333–8.CrossRefGoogle ScholarPubMed
Neale, G. A., Pui, C. H., Mahmoud, H. H., et al.Molecular evidence for minimal residual bone marrow disease in children with ‘isolated’ extra-medullary relapse of T-cell acute lymphoblastic leukemia. Leukemia, 1994; 8: 768–75.Google ScholarPubMed
Lal, A., Kwan, E., al Mahr, M., et al.Molecular detection of acute lymphoblastic leukaemia in boys with testicular relapse. Mol Pathol, 1998; 51: 277–82.CrossRefGoogle ScholarPubMed
Uckun, F. M., Gaynon, P. S., Stram, D. O., et al.Paucity of leukemic progenitor cells in the bone marrow of pediatric B-lineage acute lymphoblastic leukemia patients with an isolated extramedullary first relapse. Clin Cancer Res, 1999; 5: 2415–20.Google ScholarPubMed
Bührer, C., Hartmann, R., Fengler, R., et al.Superior prognosis in combined compared to isolated bone marrow relapses in salvage therapy of childhood acute lymphoblastic leukemia. Med Pediatr Oncol, 1993; 21: 470–6.CrossRefGoogle ScholarPubMed
Chessells, J. M.Relapsed lymphoblastic leukaemia in children: a continuing challenge. Br J Haematol, 1998; 102: 423–38.CrossRefGoogle ScholarPubMed
Jahnukainen, K., Salmi, T. T., Kristinsson, J., et al.The clinical indications for identical pathogenesis of isolated and non-isolated testicular relapses in acute lymphoblastic leukaemia. Acta Paediatr, 1998; 87: 638–43.CrossRefGoogle ScholarPubMed
Henze, G., Fengler, R., Hartmann, R., et al.Chemotherapy for bone marrow relapse of childhood acute lymphoblastic leukemia. Cancer Chemother Pharmacol, 1989; 24: S16–9.CrossRefGoogle ScholarPubMed
Abshire, T. C., Buchanan, G. R., Jackson, J. F., et al.Morphologic, immunologic and cytogenetic studies in children with acute lymphoblastic leukemia at diagnosis and relapse: a Pediatric Oncology Group study. Leukemia, 1992; 6: 357–62.Google ScholarPubMed
Bührer, C., Hartmann, R., Fengler, R., et al.Peripheral blast counts at diagnosis of late isolated bone marrow relapse of childhood acute lymphoblastic leukemia predict response to salvage chemotherapy and outcome. J Clin Oncol, 1996; 14: 2812–17.CrossRefGoogle ScholarPubMed
Crist, W., Carroll, A., Shuster, J., et al.Philadelphia chromosome positive childhood acute lymphoblastic leukemia: clinical and cytogenetic characteristics and treatment outcome. A Pediatric Oncology Group study. Blood, 1990; 76: 489–94.Google ScholarPubMed
Schlieben, S., Borkhardt, A., Reinisch, I., et al.Incidence and clinical outcome of children with BCR/ABL-positive acute lymphoblastic leukemia (ALL). A prospective RT-PCR study based on 673 patients enrolled in the German pediatric multicenter therapy trials ALL-BFM-90 and CoALL-05-92. Leukemia, 1996; 10: 857–63.Google ScholarPubMed
Fletcher, J. A., Lynch, E. A., Kimball, V. M., et al.Translocation (9; 22) is associated with extremely poor prognosis in intensively treated children with acute lymphoblastic leukemia. Blood, 1991; 77: 435–9.Google ScholarPubMed
Beyermann, B., Adams, H. P., & Henze, G.Philadelphia chromosome in relapsed childhood acute lymphoblastic leukemia: a matched-pair analysis. Berlin-Frankfurt-Münster Study Group. J Clin Oncol, 1997; 15: 2231–7.CrossRefGoogle ScholarPubMed
Borkhardt, A., Cazzaniga, G., Viehmann, S., et al.Incidence and clinical relevance of TEL/AML1 fusion genes in children with acute lymphoblastic leukemia enrolled in the German and Italian multicenter therapy trials. Associazione Italiana Ematologia Oncologia Pediatrica and the Berlin-Frankfurt-Munster Study Group. Blood, 1997; 90: 571–7.Google ScholarPubMed
Takahashi, Y., Horibe, K., Kiyoi, H., et al.Prognostic significance of TEL/AML1 fusion transcript in childhood B-precursor acute lymphoblastic leukemia. J Pediatr Hematol Oncol, 1998; 20: 190–5.CrossRefGoogle ScholarPubMed
Rubnitz, J. E., Downing, J. R., Pui, C. H., et al.TEL gene rearrangement in acute lymphoblastic leukemia: a new genetic marker with prognostic significance. J Clin Oncol, 1997; 15: 1150–7.CrossRefGoogle ScholarPubMed
Loh, M. L., Silverman, L. B., Young, M. L., et al.Incidence of TEL/AML1 fusion in children with relapsed acute lymphoblastic leukemia. Blood, 1998; 92: 4792–7.Google ScholarPubMed
Rubnitz, J. E., Behm, F. G., Wichlan, D., et al.Low frequency of TEL-AML1 in relapsed acute lymphoblastic leukemia supports a favorable prognosis for this genetic subgroup. Leukemia, 1999; 13: 19–21.CrossRefGoogle ScholarPubMed
Seeger, K., Adams, H. P., Buchwald, D., et al.TEL-AML1 fusion transcript in relapsed childhood acute lymphoblastic leukemia. The Berlin-Frankfurt-Münster Study Group. Blood, 1998; 91: 1716–22.Google ScholarPubMed
Konrad, M., Metzler, M., Panzer, S., et al.Late relapses evolve from slow-responding subclones in t(12; 21)-positive acute lymphoblastic leukemia: evidence for the persistence of a preleukemic clone. Blood, 2003; 101: 3635–40.CrossRefGoogle Scholar
Ford, A. M., Fasching, K., Panzer-Grumayer, E. R., et al.Origins of “late” relapse in childhood acute lymphoblastic leukemia with TEL-AML1 fusion genes. Blood, 2001; 98: 558–64.CrossRefGoogle ScholarPubMed
Seeger, K., Buchwald, D., Peter, A., et al.TEL-AML1 fusion in relapsed childhood acute lymphoblastic leukemia. Blood, 1999; 94: 374–6.Google ScholarPubMed
Seeger, K., Buchwald, D., Taube, T., et al.TEL-AML1 positivity in relapsed B cell precursor acute lymphoblastic leukemia in childhood. Berlin-Frankfurt-Münster Study Group [letter]. Leukemia, 1999; 13: 1469–70.CrossRefGoogle Scholar
Langlands, K., Craig, J. I., Anthony, R. S., & Parker, A. C.Clonal selection in acute lymphoblastic leukaemia demonstrated by polymerase chain reaction analysis of immunoglobulin heavy chain and T-cell receptor delta chain rearrangements. Leukemia, 1993; 7: 1066–70.Google ScholarPubMed
Klumper, E., Pieters, R., Veerman, A. J., et al.In vitro cellular drug resistance in children with relapsed/refractory acute lymphoblastic leukemia. Blood, 1995; 86: 3861–8.Google ScholarPubMed
Kawamura, M., Kikuchi, A., Kobayashi, S., et al.Mutations of the p53 and ras genes in childhood t(1; 19)-acute lymphoblastic leukemia. Blood, 1995; 85: 2546–52.Google Scholar
Marks, D. I., Kurz, B. W., Link, M. P., et al.Altered expression of p53 and mdm-2 proteins at diagnosis is associated with early treatment failure in childhood acute lymphoblastic leukemia. J Clin Oncol, 1997; 15: 1158–62.CrossRefGoogle ScholarPubMed
Lam, V., McPherson, J. P., Salmena, L., et al.p53 gene status and chemosensitivity of childhood acute lymphoblastic leukemia cells to adriamycin. Leuk Res, 1999; 23: 871–80.CrossRefGoogle ScholarPubMed
Zhou, M., Gu, L., Abshire, T. C., et al.Incidence and prognostic significance of MDM2 oncoprotein overexpression in relapsed childhood acute lymphoblastic leukemia. Leukemia, 2000; 14: 61–7.CrossRefGoogle ScholarPubMed
Blau, O., Avigad, S., Stark, B., et al.Exon 5 mutations in the p53 gene in relapsed childhood acute lymphoblastic leukemia. Leuk Res, 1997; 21: 721–9.CrossRefGoogle ScholarPubMed
Kaspers, G. J., Pieters, R., Klumper, E., De Waal, F. C., & Veerman, A. J.Glucocorticoid resistance in childhood leukemia. Leuk Lymphoma, 1994; 13: 187–201.CrossRefGoogle ScholarPubMed
Rivera, G., Pratt, C. B., Aur, R. J., Verzosa, M., & Hustu, H. O.Recurrent childhood lymphocytic leukemia following cessation of therapy: treatment and response. Cancer, 1976; 37: 1679–86.3.0.CO;2-8>CrossRefGoogle Scholar
Cornbleet, M. A., & Chessells, J. M.Bone-marrow relapse in acute lymphoblastic leukaemia in childhood. Br Med J, 1978; 2: 104–6.CrossRefGoogle ScholarPubMed
Creutzig, U. & Schellong, G.Treatment of relapse in acute lymphoblastic leukaemia of childhood. Dtsch Med Wochenschr, 1980; 105: 1109–12.CrossRefGoogle ScholarPubMed
Behrendt, H., Leeuwen, E. F., Schuwirth, C., et al.Bone marrow relapse occurring as first relapse in children with acute lymphoblastic leukemia. Med Pediatr Oncol, 1990; 18: 190–6.CrossRefGoogle ScholarPubMed
Johnson, F. L., Thomas, E. D., Clark, B. S., et al.A comparison of marrow transplantation with chemotherapy for children with acute lymphoblastic leukemia in second or subsequent remission. N Engl J Med, 1981; 305: 846–51.CrossRefGoogle ScholarPubMed
Woods, W. G., Nesbit, M. E., Ramsay, N. K., et al.Intensive therapy followed by bone marrow transplantation for patients with acute lymphocytic leukemia in second or subsequent remission: determination of prognostic factors (a report from the University of Minnesota Bone Marrow Transplantation Team). Blood, 1983; 61: 1182–9.Google Scholar
Buchanan, G. R.Diagnosis and management of relapse in acute lymphoblastic leukemia. Hematol Oncol Clin North Am, 990; 4: 971–95.Google Scholar
Giona, F., Testi, A. M., Rondelli, R., et al.ALL R-87 protocol in the treatment of children with acute lymphoblastic leukaemia in early bone marrow relapse. Br J Haematol, 1997; 99: 671–7.CrossRefGoogle ScholarPubMed
Henze, G., Fengler, R., & Hartmann, R.Chemotherapy for relapsed childhood acute lymphoblastic leukemia: results of the BFM Study Group. Haematol Blood Transfus, 1994; 36: 374–9.Google Scholar
Pui, C. H., Bowman, W. P., Ochs, J., Dodge, R. K., & Rivera, G. K.Cyclic combination chemotherapy for acute lymphoblastic leukemia recurring after elective cessation of therapy. Med Pediatr Oncol, 1988; 16: 21–6.CrossRefGoogle Scholar
Sadowitz, P. D., Smith, S. D., Shuster, J., et al.Treatment of late bone marrow relapse in children with acute lymphoblastic leukemia: a Pediatric Oncology Group study. Blood, 1993; 81: 602–9.Google ScholarPubMed
Culbert, S. J., Shuster, J. J., Land, V. J., et al.Remission induction and continuation therapy in children with their first relapse of acute lymphoid leukemia: a Pediatric Oncology Group study. Cancer, 1991; 67: 37–42.3.0.CO;2-#>CrossRefGoogle ScholarPubMed
Rivera, G. K., Buchanan, G., Boyett, J. M., et al.Intensive retreatment of childhood acute lymphoblastic leukemia in first bone marrow relapse: a Pediatric Oncology Group study. N Engl J Med, 1986; 315: 273–8.CrossRefGoogle ScholarPubMed
Morland, B. J. & Shaw, P. J.Induction toxicity of a modified Memorial Sloan-Kettering-New York II Protocol in children with relapsed acute lymphoblastic leukemia: a single institution study. Med Pediatr Oncol, 1996; 27: 139–44.3.0.CO;2-F>CrossRefGoogle ScholarPubMed
Rossi, M. R., Masera, G., Zurlo, M. G., et al.Randomized multicentric Italian study on two treatment regimens for marrow relapse in childhood acute lymphoblastic leukemia. Pediatr Hematol Oncol, 1986; 3: 1–9.CrossRefGoogle ScholarPubMed
Buchanan, G. R., Rivera, G. K., Boyett, J. M., et al.Reinduction therapy in 297 children with acute lymphoblastic leukemia in first bone marrow relapse: a Pediatric Oncology Group study. Blood, 1988; 72: 1286–92.Google ScholarPubMed
Hryniuk, W. M. The importance of dose intensity in the outcome of chemotherapy. In , V. T. Devita, , S. Hellman, & , S. A. Rosenberg, eds., Important Advances in Oncology (Philadelphia, PA: Lippincott, 1988), pp. 121–44.Google Scholar
Herold, R., Stackelberg, A. von, Hartmann, R., Eisenreich, B., & Henze, G.Acute lymphoblastic leukemia-relapse study of the Berlin-Frankfurt-Münster Group (ALL-REZ BFM) experience: early treatment intensity makes the difference. J Clin Oncol, 2004; 22: 569–70.CrossRefGoogle ScholarPubMed
Buchanan, G. R., Rivera, G. K., Pollock, B. H., et al.Alternating drug pairs with or without periodic reinduction in children with acute lymphoblastic leukemia in second bone marrow remission: a Pediatric Oncology Group study. Cancer, 2000; 88: 1166–74.3.0.CO;2-W>CrossRefGoogle ScholarPubMed
Bührer, C., Hartmann, R., Fengler, R., et al.Importance of effective central nervous system therapy in isolated bone marrow relapse of childhood acute lymphoblastic leukemia. Blood, 1994; 83: 3468–72.Google ScholarPubMed
Land, V. J., Thomas, P. R., Boyett, J. M., et al.Comparison of maintenance treatment regimens for first central nervous system relapse in children with acute lymphocytic leukemia: a Pediatric Oncology Group study. Cancer, 1985; 56: 81–7.3.0.CO;2-2>CrossRefGoogle ScholarPubMed
Ritchey, A. K., Pollock, B. H., Lauer, S. J., Andejeski, Y., & Buchanan, G. R.Improved survival of children with isolated CNS relapse of acute lymphoblastic leukemia: a Pediatric Oncology Group study. J Clin Oncol, 1999; 17: 3745–52.CrossRefGoogle ScholarPubMed
Goulden, N., Langlands, K., Steward, C., et al.PCR assessment of bone marrow status in ‘isolated’ extramedullary relapse of childhood B-precursor acute lymphoblastic leukaemia. Br J Haematol, 1994; 87: 282–5.CrossRefGoogle ScholarPubMed
Ortega, J. J., Javier, G., & Toran, N.Testicular infiltrates in children with acute lymphoblastic leukemia: a prospective study. Med Pediatr Oncol, 1984; 12: 386–93.CrossRefGoogle ScholarPubMed
Sullivan, M. P., Perez, C. A., Herson, J., et al.Radiotherapy (2500 rad) for testicular leukemia: local control and subsequent clinical events: a Southwest Oncology Group study. Cancer, 1980; 46: 508–15.3.0.CO;2-I>CrossRefGoogle ScholarPubMed
Bowman, W. P., Aur, R. J., Hustu, H. O., & Rivera, G.Isolated testicular relapse in acute lymphocytic leukemia of childhood: categories and influence on survival. J Clin Oncol, 1984; 2: 924–9.CrossRefGoogle ScholarPubMed
Wolfrom, C., Hartmann, R., Brühmüller, S., et al.Similar outcome on boys with isolated and combined testicular acute lymphoblastic leukemia relapse after stratified BFM salvage therapy. Haematol Blood Transfus, 1997; 38: 647.Google Scholar
Atkinson, K., Thomas, P. R., Peckham, M. J., & McElwain, T. J.Radiosensitivity of the acute leukaemic infiltrate. Eur J Cancer, 1976; 12: 535–40.CrossRefGoogle ScholarPubMed
Grundy, R. G., Leiper, A. D., Stanhope, R., & Chessells, J. M.Survival and endocrine outcome after testicular relapse in acute lymphoblastic leukaemia. Arch Dis Child, 1997; 76: 190–6.CrossRefGoogle ScholarPubMed
Nachman, J., Palmer, N. F., Sather, H. N., et al.Open-wedge testicular biopsy in childhood acute lymphoblastic leukemia after two years of maintenance therapy: diagnostic accuracy and influence on outcome – a report from Children's Cancer Study Group. Blood, 1990; 75: 1051–5.Google ScholarPubMed
Wofford, M. M., Smith, S. D., Shuster, J. J., et al.Treatment of occult or late overt testicular relapse in children with acute lymphoblastic leukemia: a Pediatric Oncology Group study. J Clin Oncol, 1992; 10: 624–30.CrossRefGoogle ScholarPubMed
Uderzo, C., Grazia, Zurlo, M, Adamoli, L., et al.Treatment of isolated testicular relapse in childhood acute lymphoblastic leukemia: an Italian multicenter study. J Clin Oncol, 1990; 8: 672–7.CrossRefGoogle Scholar
Brecher, M. L., Weinberg, V., Boyett, J. M., et al.Intermediate dose methotrexate in childhood acute lymphoblastic leukemia resulting in decreased incidence of testicular relapse. Cancer, 1986; 58: 1024–8.3.0.CO;2-V>CrossRefGoogle ScholarPubMed
Freeman, A. I., Weinberg, V., Brecher, M. L., et al.Comparison of intermediate-dose methotrexate with cranial irradiation for the post-induction treatment of acute lymphocytic leukemia in children. N Engl J Med, 1983; 308: 477–84.CrossRefGoogle ScholarPubMed
Leiper, A. D., Grant, D. B., & Chessells, J. M.Gonadal function after testicular radiation for acute lymphoblastic leukaemia. Arch Dis Child, 1986; 61: 53–6.CrossRefGoogle ScholarPubMed
Castillo, L. A., Craft, A. W., Kernahan, J., Evans, R. G., & Aynsley-Green, A.Gonadal function after 12-Gy testicular irradiation in childhood acute lymphoblastic leukaemia. Med Pediatr Oncol, 1990; 18: 185–9.CrossRefGoogle ScholarPubMed
Askin, F. B., Land, V. J., Sullivan, M. P., et al.Occult testicular leukemia: testicular biopsy at three years continuous complete remission of childhood leukemia: a Southwest Oncology Group study. Cancer, 1981; 47: 470–5.3.0.CO;2-T>CrossRefGoogle ScholarPubMed
Knechtli, C. J., Goulden, N. J., Hancock, J. P., et al.Minimal residual disease status before allogeneic bone marrow transplantation is an important determinant of successful outcome for children and adolescents with acute lymphoblastic leukemia. Blood, 1998; 92: 4072–9.Google ScholarPubMed
Bader, P., Hancock, J., Kreyenberg, H., et al.Minimal residual disease (MRD) status prior to allogeneic stem cell transplantation is a powerful predictor for post-transplant outcome in children with ALL. Leukemia, 2002; 16: 1668–72.CrossRefGoogle Scholar
Bader, P., Klingebiel, T., Schaudt, A., et al.Prevention of relapse in pediatric patients with acute leukemias and MDS after allogeneic SCT by early immunotherapy initiated on the basis of increasing mixed chimerism: a single center experience of 12 children. Leukemia, 1999; 13: 2079–86.CrossRefGoogle ScholarPubMed
Bader, P., Beck, J., Frey, A., et al.Serial and quantitative analysis of mixed hematopoietic chimerism by PCR in patients with acute leukemias allows the prediction of relapse after allogeneic BMT. Bone Marrow Transplant, 1998; 21: 487–95.CrossRefGoogle ScholarPubMed
Storb, R., Bryant, J. I., Buckner, C. D., et al.Allogeneic marrow grafting for acute lymphoblastic leukemia: leukemic relapse. Transplant Proc, 1973; 5: 923–6.Google ScholarPubMed
Thomas, E. D., Buckner, C. D., Banaji, M., et al.One hundred patients with acute leukemia treated by chemotherapy, total body irradiation, and allogeneic marrow transplantation. Blood, 1977; 49: 511–33.Google ScholarPubMed
Brochstein, J. A., Kernan, N. A., Groshen, S., et al.Allogeneic bone marrow transplantation after hyperfractionated total-body irradiation and cyclophosphamide in children with acute leukemia. N Engl J Med, 1987; 317–24.Google ScholarPubMed
Weyman, C., Graham-Pole, J., Emerson, S., et al.Use of cytosine arabinoside and total body irradiation as conditioning for allogeneic marrow transplantation in patients with acute lymphoblastic leukemia: a multicenter survey. Bone Marrow Transplant, 1993; 11: 43–50.Google ScholarPubMed
Uderzo, C., Rondelli, R., Dini, G., et al.High-dose vincristine, fractionated total-body irradiation and cyclophosphamide as conditioning regimen in allogeneic and autologous bone marrow transplantation for childhood acute lymphoblastic leukaemia in second remission: a 7-year Italian multicentre study. Br J Haematol, 1995; 89: 790–7.CrossRefGoogle ScholarPubMed
Dopfer, R., Henze, G., Bender-Götze, C., et al.Allogeneic bone marrow transplantation for childhood acute lymphoblastic leukemia in second remission after intensive primary and relapse therapy according to the BFM- and CoALL-protocols: results of the German Cooperative Study. Blood, 1991; 78: 2780–4.Google ScholarPubMed
Moussalem, M., Esperou, Bourdeau, H., Devergie, A., et al.Allogeneic bone marrow transplantation for childhood acute lymphoblastic leukemia in second remission: factors predictive of survival, relapse and graft-versus-host disease. Bone Marrow Transplant, 1995; 15: 943–7.Google ScholarPubMed
Barrett, A. J., Horowitz, M. M., Pollock, B. H., et al.Bone marrow transplants from HLA-identical siblings as compared with chemotherapy for children with acute lymphoblastic leukemia in a second remission. N Engl J Med, 1994; 331: 1253–8.CrossRefGoogle Scholar
Borgmann, A., Baumgarten, E., Schmid, H., et al.Allogeneic bone marrow transplantation for a subset of children with acute lymphoblastic leukemia in third remission: a conceivable alternative ?Bone Marrow Transplant, 1997; 20: 939–44.CrossRefGoogle ScholarPubMed
Beatty, P. G., Hansen, J. A., Longton, G. M., et al.Marrow transplantation from HLA-matched unrelated donors for treatment of hematologic malignancies. Transplantation, 1991; 51: 443–7.CrossRefGoogle ScholarPubMed
Kernan, N. A., Bartsch, G., Ash, R. C., et al.Analysis of 462 transplantations from unrelated donors facilitated by the National Marrow Donor Program. N Engl J Med, 1993; 328: 593–602.CrossRefGoogle ScholarPubMed
Weisdorf, D. J., Billett, A. L., Hannan, P., et al.Autologous versus unrelated donor allogeneic marrow transplantation for acute lymphoblastic leukemia. Blood, 1997; 90: 2962–8.Google ScholarPubMed
Oakhill, A., Pamphilon, D. H., Potter, M. N., et al.Unrelated donor bone marrow transplantation for children with relapsed acute lymphoblastic leukaemia in second complete remission. Br J Haematol, 1996; 94: 574–8.CrossRefGoogle ScholarPubMed
Lausen, B. F., Heilmann, C., Vindelov, L., & Jacobsen, N.Outcome of acute lymphoblastic leukaemia in Danish children after allogeneic bone marrow transplantation. Superior survival following transplantation with matched unrelated donor grafts. Bone Marrow Transplant, 1998; 22: 325–30.CrossRefGoogle ScholarPubMed
Borgmann, A., Stackelberg, A. von, Hartmann, R., et al.Unrelated donor stem cell transplantation compared with chemotherapy for children with acute lymphoblastic leukemia in a second remission: a matched-pair analysis. Blood, 2003; 101: 3835–9.CrossRefGoogle Scholar
Szydlo, R., Goldman, J. M., Klein, J. P., et al.Results of allogeneic bone marrow transplants for leukemia using donors other than HLA-identical siblings. J Clin Oncol, 1997; 15: 1767–77.CrossRefGoogle ScholarPubMed
Kawano, Y., Takaue, Y., Watanabe, A., et al.Partially mismatched pediatric transplants with allogeneic CD34(+) blood cells from a related donor. Blood, 1998; 92: 3123–30.Google ScholarPubMed
Aversa, F., Tabilio, A., Velardi, A., et al.Treatment of high-risk acute leukemia with T-cell-depleted stem cells from related donors with one fully mismatched HLA haplotype. N Engl J Med, 1998; 339: 1186–93.CrossRefGoogle ScholarPubMed
Locatelli, F., Rocha, V., Chastang, C., et al.Factors associated with outcome after cord blood transplantation in children with acute leukemia. Eurocord-Cord Blood Transplant Group. Blood, 1999; 93: 3662–71.Google ScholarPubMed
Slavin, S., Nagler, A., Naparstek, E., et al.Nonmyeloablative stem cell transplantation and cell therapy as an alternative to conventional bone marrow transplantation with lethal cytoreduction for the treatment of malignant and nonmalignant hematologic diseases. Blood, 1998; 91: 756–63.Google ScholarPubMed
Borgmann, A., Stackelberg, A. von, Baumgarten, E., et al.Immunotherapy of acute lymphoblastic leukemia by vaccination with autologous leukemic cells transfected with a cDNA expression plasmid coding for an allogeneic HLA class I antigen combined with interleukin-2 treatment. J Mol Med, 1998; 76: 215–21.Google ScholarPubMed
Matthews, D. C., Appelbaum, F. R., Eary, J. F., et al.Phase I study of (131)I-anti-CD45 antibody plus cyclophosphamide and total body irradiation for advanced acute leukemia and myelodysplastic syndrome. Blood, 1999; 94: 1237–47.Google ScholarPubMed
Pinilla-Ibarz, J., Cathcart, K., Korontsvit, T., et al.Vaccination of patients with chronic myelogenous leukemia with bcr-abl oncogene breakpoint fusion peptides generates specific immune responses. Blood, 2000; 95: 1781–7.Google ScholarPubMed
Eckert, C., Biondi, A., Seeger, K., et al.Prognostic value of minimal residual disease in relapsed childhood acute lymphoblastic leukaemia. Lancet, 2001; 358: 1239–41.CrossRefGoogle ScholarPubMed
Lawson, S. E., Harrison, G., Richards, S., et al.The UK experience in treating relapsed childhood acute lymphoblastic leukaemia: a report on the Medical Research Council UKALLR1 study. Br J Haematol, 2000; 108: 531–43.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Relapsed acute lymphoblastic leukemia
    • By Günter Henze, Professor and Director, Pediatric Oncology/Hematology, Charité-Campus Virchow Klinikum, Augustenburger Platz, Berlin, Germany, Arend von Stackelberg, Pediatric Oncology/Hematology, Charité-Campus Virchow Klinikum, Berlin, Germany
  • Edited by Ching-Hon Pui
  • Book: Childhood Leukemias
  • Online publication: 01 July 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511471001.018
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Relapsed acute lymphoblastic leukemia
    • By Günter Henze, Professor and Director, Pediatric Oncology/Hematology, Charité-Campus Virchow Klinikum, Augustenburger Platz, Berlin, Germany, Arend von Stackelberg, Pediatric Oncology/Hematology, Charité-Campus Virchow Klinikum, Berlin, Germany
  • Edited by Ching-Hon Pui
  • Book: Childhood Leukemias
  • Online publication: 01 July 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511471001.018
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Relapsed acute lymphoblastic leukemia
    • By Günter Henze, Professor and Director, Pediatric Oncology/Hematology, Charité-Campus Virchow Klinikum, Augustenburger Platz, Berlin, Germany, Arend von Stackelberg, Pediatric Oncology/Hematology, Charité-Campus Virchow Klinikum, Berlin, Germany
  • Edited by Ching-Hon Pui
  • Book: Childhood Leukemias
  • Online publication: 01 July 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511471001.018
Available formats
×