Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-qlrfm Total loading time: 0 Render date: 2024-07-11T23:28:11.406Z Has data issue: false hasContentIssue false

22 - Chronic myeloproliferative disorders

from Part III - Evaluation and treatment

Published online by Cambridge University Press:  01 July 2010

Charlotte M. Niemeyer
Affiliation:
Professor of Pediatrics Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University of Freiburg, Freiburg, Germany
Franco Locatelli
Affiliation:
Professor of Pediatrics, Pediatric Hematology and Oncology, IRCCS Policlinico San Matteo, Pavia, Italy
Ching-Hon Pui
Affiliation:
St. Jude Children's Research Hospital, Memphis
Get access

Summary

Introduction

In 1951, Dameshek first speculated on the observation that different chronic proliferative disorders share similar clinical and hematologic features and that patients with one of these diseases often develop, during the course of their illness, symptoms more typical of another disease, usually more severe than the original one. He coined the term “myeloproliferative disorders” (MPD) for these, now widely recognized, clonal proliferations of an abnormal hematopoietic stem cell. This group of related diseases, characterized by a variable propensity to evolve into acute leukemia, included chronic myeloid leukemia (CML), polycythemia vera, essential thrombocythemia and myelofibrosis with myeloid metaplasia (currently referred to as chronic idiopathic myelofibrosis). More than 50 years later, this classification, which is applicable to both adults and children, still maintains its clinical and biologic value. Apart from these acquired hematopoietic neoplasms, rare congenital genetic abnormalities can give rise to myeloproliferative disorders (Table 22.1).

Myeloid neoplasms that present with aberrant proliferative and dysplastic features have raised considerable controversy with respect to their classification. The recent classification system of the World Health Organization (WHO) groups these diseases with their variable effective or dysplastic hematopoiesis into a separate category of myelodysplastic/myeloproliferative disorders, including juvenile myelomonocytic leukemia (JMML), chronic myelomonocytic leukemia (CMML), atypical CML and a group of otherwise unclassifiable diseases. While JMML represents about 2% to 3% of leukemias in children, CMML and atypical CML are extremely rare in young people. CMML is occasionally diagnosed in an adolescent with persistent monocytosis, low blast count, and the absence of genetic features indicating JMML or CML.

Type
Chapter
Information
Childhood Leukemias , pp. 571 - 598
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Dameshek, W.Some speculations on the myeloproliferative syndromes. Blood, 1951; 6: 372–5.Google ScholarPubMed
Thiele, J., Pierre, R., Imbert, M., Vardiman, J. W., & Flandrin, G. Chronic idiopathic myelofibrosis. In , E. S. Jaffe, , N. L. Harris, , H. Stein & , J. W. Vardiman, eds., World Health Organization Classification of Tumours: Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues (Lyon, France: IARC, 2001), pp. 35–8.Google Scholar
Vardiman, J. W. Myelodysplastic/myeloproliferative diseases. In , E. S. Jaffe, , N. L. Harris, , H. Stein, J. W., & Vardiman, , eds., World Health Organization Classification of Tumours: Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues. (Lyon, France: IARC, 2001), pp. 47–59.Google Scholar
Hasle, H., Kerndrup, G., & Jacobsen, B. B.Childhood myelodysplastic syndrome in Denmark: incidence and predisposing conditions. Leukemia, 1995; 9: 1569–72.Google ScholarPubMed
Hasle, H., Wadsworth, L. D., Massing, B. G., et al.A population-based study of childhood myelodysplastic syndrome in British Columbia, Canada. Br J Haematol, 1999; 106: 1027–32.CrossRefGoogle ScholarPubMed
Solmitz, W.Ein Fall von myeloischer Leukämie im ersten Kindesalter. Zeitschr f Kinderh, 1924; 38: 146–58.CrossRefGoogle Scholar
Cooke, J. V.Chronic myelogenous leukemia in children. J Pediatr, 1953; 42: 537–50.CrossRefGoogle ScholarPubMed
Bernard, J., Seligmann, M., & Acar, J.La leucémie myeloide chronique de l′enfant. Étude de vingt observations. Arch Fr Pediatr, 1962; 19: 881–94.Google Scholar
Weisgerber, D. J., Schaison, G., & Seligmann, M.Les leucémies myélomonocytaires du petit enfant. Bull Cancer, 1969; 56: 351–64.Google Scholar
Weisgerber, C., Schaison, G., Chavelet, F., et al.Les leucémies myelo-monocytaires de l′enfant. Étude de 28 observations. Arch Fr Pediatr, 1972; 29: 11–30.Google Scholar
Schaison, G., Weisgerber, C., Seligmann, M., et al.Les leucémies myelo-monocytaires avec xanthomes. Nouv Rev Fr Hematol, 1970; 10: 284–8.Google Scholar
Castro-Malaspina, H., Schaison, G., Passe, S., et al.Subacute and chronic myelomonocytic leukemia in children (juvenile CML). Clinical and hematologic observations, and identification of prognostic factors. Cancer, 1984; 54: 675–86.3.0.CO;2-Q>CrossRefGoogle ScholarPubMed
Reisman, L. E. & Trujillo, J. M.Chronic granulocytic leukemia of childhood. J Pediatr, 1963; 62: 710–23.CrossRefGoogle ScholarPubMed
Hardisty, R. M., Speed, D. E., & Morwenna, T.Granulocytic leukemia in childhood. Br J Haematol, 1964; 10: 551–66.CrossRefGoogle ScholarPubMed
Freedman, M. H., Estrov, Z., & Chan, H. S.Juvenile chronic myelogenous leukemia. Am J Pediatr Hematol Oncol, 1988; 10: 261–7.CrossRefGoogle ScholarPubMed
Beaven, G. H., Steven, B. L., Dance, N., et al.Occurrence of haemoglobin H in leukaemia. Nature, 1963; 199: 1297–8.CrossRefGoogle ScholarPubMed
Weatherall, D. J., Edward, J. A., & Donohoe, W. T.Haemoglobin and red cell enzyme changes in juvenile myeloid leukaemia. Br Med J, 1968; 1: 679–81.CrossRefGoogle ScholarPubMed
Maurer, H. S., Vida, L. N., & Honig, G. R.Similarities of the erythrocytes in juvenile chronic myelogenous leukemia to fetal erythrocytes. Blood, 1972; 39: 778–84.Google ScholarPubMed
Humbert, J. R., Hathaway, W. E., Robinson, A., et al.Pre-leukemia in children with a missing bone marrow C chromosome and a myeloproliferative disorder. Br J Haematol, 1971; 21: 705–16.Google Scholar
Macdougall, L. G., Brown, J. A., Cohen, M. M., et al.C-monosomy myeloproliferative syndrome: a case of 7-monosomy. J Pediatr, 1974; 84: 256–9.CrossRefGoogle ScholarPubMed
Sieff, C. A., Chessells, J. M., Harvey, B. A. M., et al.Monosomy 7 in childhood: a myeloproliferative disorder. Br J Haematol, 1981; 49: 235–49.CrossRefGoogle ScholarPubMed
Evans, J. P., Czepulkowski, B., Gibbons, B., et al.Childhood monosomy 7 revisited. Br J Haematol, 1988; 69: 41–5.CrossRefGoogle ScholarPubMed
Passmore, S. J., Hann, I. M., Stiller, C. A., et al.Pediatric myelodysplasia: a study of 68 children and a new prognostic scoring system. Blood, 1995; 85: 1742–50.Google Scholar
Bennett, J. M., Catovsky, D., Daniel, M. T., et al.Proposals for the classification of the myelodysplastic syndromes. Br J Haematol, 1982; 51: 189–99.CrossRefGoogle ScholarPubMed
Niemeyer, C. M., Aricò, M., Basso, G., et al.Chronic myelomonocytic leukemia in childhood: a report of 110 cases. Blood, 1997; 89: 3534–43.Google Scholar
Hasle, H. & Kerndrup, G.Atypical chronic myeloid leukaemia and chronic myelomonocytic leukaemia in children. Br J Haematol, 1995; 89: 428–9.CrossRefGoogle ScholarPubMed
Niemeyer, C. M., Fenu, S., Hasle, H., et al.Differentiating juvenile myelomonocytic leukemia from infectious disease [letter]. Blood, 1998; 91: 365–7.Google Scholar
Hasle, H., Niemeyer, C. M., Chessells, J. M., et al.A pediatric approach to the WHO classification of myelodysplastic and myeloproliferative diseases. Leukemia, 2003; 17: 277–82.CrossRefGoogle ScholarPubMed
Passmore, J., Chessells, J., Kempski, H., et al.Paediatric MDS and JMML in the UK: a population-based study of incidence and survival. Br J Haematol, 2003; 121: 758–67.CrossRefGoogle Scholar
Mark, Z., Toren, A., Amariglio, N., et al.Rearrangement of the immunoglobulin heavy chain gene in juvenile chronic myeloid leukaemia. Br J Haematol, 1995; 90: 353–7.CrossRefGoogle ScholarPubMed
Holton, C. P. & Johnson, W. W.Chronic myelocytic leukemia in infant siblings. J Pediatr, 1968; 72: 377–83.CrossRefGoogle ScholarPubMed
Bader, J. L. & Miller, R. W.Neurofibromatosis and childhood leukemia. J Pediatr, 1978; 92: 925–9.CrossRefGoogle ScholarPubMed
Mays, J. A., Neerhout, T. C., Bagby, G. C., et al.Juvenile chronic granulocytic leukemia. Am J Dis Child, 1980; 134: 654–8.CrossRefGoogle ScholarPubMed
Clark, R. D. & Hutter, J. J.Familial neurofibromatosis and juvenile chronic myelogenous leukemia. Hum Genet, 1982; 60: 230–2.CrossRefGoogle ScholarPubMed
Stiller, C. A., Chessells, J. M., & Fitchett, M.Neurofibromatosis and childhood leukaemia/lymphoma: a population-based UKCCSG study. Br J Cancer, 1994; 70: 969–72.CrossRefGoogle ScholarPubMed
Side, L. E., Emanuel, P. D., Taylor, B., et al.Mutations of the NF1 gene in children with juvenile myelomonocytic leukemia without clinical evidence of neurofibromatosis, type 1. Blood, 1998; 92: 267–72.Google ScholarPubMed
Watanabe, I., Horiuchi, T., Hatta, N., et al.Analysis of neurofibromatosis type 1 gene mutation in juvenile chronic myelogenous leukemia. Acta Haematol, 1998; 100: 22–5.CrossRefGoogle ScholarPubMed
Shannon, K. M., Watterson, P., Johnson, P., et al.Monosomy 7 myeloproliferative disease in children with neurofibromatosis, type 1: epidemiology and molecular analysis. Blood, 1992; 79: 1311–18.Google ScholarPubMed
Lutz, P., Zix-Kieffer, I., Souillet, G., et al.Juvenile myelomonocytic leukemia: analyses of treatment results in the EORTC childrens leukemia cooperative group (CLCG). Bone Marrow Transplant, 1996; 18: 1111–16.Google Scholar
Bader-Meunier, B., Tchernia, G., Mielot, F., et al.Occurrence of myeloproliferative disorder in patients with Noonan syndrome. J Pediatr, 1997; 130: 885–9.CrossRefGoogle ScholarPubMed
Fukuda, M., Horibe, K., Miyajima, Y., et al.Spontaneous remission of juvenile chronic myelomonocytic leukemia in an infant with Noonan syndrome. J Pediatr Hematol Oncol, 1997; 19: 177–9.CrossRefGoogle Scholar
Choong, K., Freedman, M. H., Chitayat, D., et al.Juvenile myelomonocytic leukemia and Noonan syndrome. J Pediatr Hematol Oncol, 1999; 21: 523–7.CrossRefGoogle ScholarPubMed
Tartaglia, M., Niemeyer, C. M., Song, X., et al.Somatic PTPN11 mutations in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia. Nat Genet, 2003; 34: 148–50.CrossRefGoogle ScholarPubMed
Sasaki, H., Manabe, A., Kojima, S., et al.Myelodysplastic syndrome in childhood: a retrospective study of 189 patients in Japan. Leukemia, 2001; 15: 1713–20.CrossRefGoogle ScholarPubMed
Side, L. E. & Shannon, K. M.Myeloid disorders in infants with Noonan syndrome and a resident's “rule” recalled. J Pediatr, 1997; 130: 857–9.Google Scholar
Tartaglia, M., Mehler, E. L., Goldberg, R., et al.Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. Nat Genet, 2001; 29: 465–8.CrossRefGoogle ScholarPubMed
Luna-Fineman, S., Shannon, K. M., Atwater, S. K., et al.Myelodysplastic and myeloproliferative disorders of childhood: a study of 167 patients. Blood, 1999; 93: 459–66.Google ScholarPubMed
Sires, U. I., Mallory, S. B., Hess, J. L., et al.Cutaneous presentation of juvenile chronic myelogenous leukemia: a diagnostic and therapeutic dilemma. Pediatr Dermatol, 1995; 12: 364–8.CrossRefGoogle ScholarPubMed
Anzai, H., Kikuchi, A., Kinoshita, A., et al.Recurrent annular erythema in juvenile chronic myelogenous leukaemia. Br J Dermatol, 1998; 138: 1058–60.CrossRefGoogle ScholarPubMed
Heskel, N. S., White, C. R., Fryberger, S., et al.Aleukemic leukemia cutis: juvenile chronic granulocytic leukemia presenting with figurate cutaneous lesions. J Am Acad Dermatol, 1983; 9: 423–7.CrossRefGoogle ScholarPubMed
Buescher, L. & Anderson, P. C.Circinate plaques heralding juvenile chronic myelogenous leukemia. Pediatr Dermatol, 1990; 7: 122–5.CrossRefGoogle ScholarPubMed
Krilov, L. R., Jacobson, M., & Shende, A.Acute febrile neutrophilic dermatosis (Sweet's syndrome) presenting as facial cellulitis in a child with juvenile chronic myelogenous leukemia. Pediatr Infect Dis, 1987; 6: 77–9.CrossRefGoogle Scholar
Jang, K. A., Choi, J. H., Sung, K. J., et al.Juvenile chronic myelogenous leukemia, neurofibromatosis 1, and xanthoma. J Dermatol, 1999; 26: 33–5.CrossRefGoogle ScholarPubMed
Shaw, N. J. & Eden, O. B.Juvenile chronic myelogenous leukemia and neurofibromatosis in infancy presenting as ocular hemorrhage. Pediatr Hematol Oncol, 1989; 6: 23–6.CrossRefGoogle ScholarPubMed
Nambu, M., Shimizu, K., Ito, S., et al.A case of juvenile myelomonocytic leukemia with ocular infiltration. Ann Hematol, 1999; 78: 568–70.CrossRefGoogle ScholarPubMed
Hasle, H., Arico, M., Basso, G., et al.Myelodysplastic syndrome and acute myeloid leukemia associated with complete or partial monosomy 7. Leukemia, 1999; 13: 376–85.CrossRefGoogle ScholarPubMed
Kitahara, M., Koike, K., Kurokawa, Y., et al.Lupus nephritis in juvenile myelomonocytic leukemia. Clin Nephrol, 1999; 51: 314–18.Google ScholarPubMed
Honig, G. R., Suarez, C. R., Vida, L. N., et al.Juvenile myelomonocytic leukemia (JMML) with the hematologic phenotype of severe beta thalassemia. Am J Hematol, 1998; 58: 67–71.3.0.CO;2-2>CrossRefGoogle ScholarPubMed
Shannon, K., Nunez, G., Dow, L. W., et al.Juvenile chronic myelogenous leukemia: surface antigen phenotyping by monoclonal antibodies and cytogenetic studies. Pediatrics, 1986; 77: 330–5.Google ScholarPubMed
Kraus, M. D., Bartlett, N. L., Fleming, M. D., et al.Splenic pathology in myelodysplasia: a report of 13 cases with clinical correlation. Am J Surg Pathol, 1998; 22: 1255–66.CrossRefGoogle ScholarPubMed
Ng, C. S., Lam, T. K., Chan, J. K., et al.Juvenile chronic myeloid leukemia. A malignancy of S-100 protein-positive histiocytes. Am J Clin Pathol, 1988; 90: 575–82.CrossRefGoogle ScholarPubMed
Hess, J. L., Zutter, M. M., Castleberry, R. P., et al.Juvenile chronic myelogenous leukemia. Am J Clin Pathol, 1996; 105: 238–48.CrossRefGoogle ScholarPubMed
Dover, G. J., Boyer, S. H., Zinkham, W. H., et al.Changing erythrocyte populations in juvenile chronic myelocytic leukemia: evidence for disordered regulation. Blood, 1977; 49: 355–65.Google ScholarPubMed
Weatherall, D. J., Clegg, J. B., Wood, W. G., et al.Foetal erythropoiesis in human leukaemia. Nature, 1975; 257: 710–2.CrossRefGoogle ScholarPubMed
Weinberg, R. S., Leibowitz, D., Weinblatt, D., et al.Juvenile chronic myelogenous leukaemia: the only example of truly fetal (not fetal-like) erythropoiesis. Br J Haematol, 1990; 76: 30–7.CrossRefGoogle ScholarPubMed
Papayannopoulou, T., Nakamoto, B., Anagnou, N. P., et al.Expression of embryonic globins by erythroid cells in juvenile chronic myelocytic leukemia. Blood, 1991; 77: 2569–76.Google ScholarPubMed
Cannat, A. & Seligmann, M.Immunological abnormalities in juvenile myelomonocytic leukemia. Br Med J, 1973; 1: 71–4.CrossRefGoogle Scholar
Butcher, M., Frenck, R., Emperor, J., et al.Molecular evidence that childhood monosomy 7 syndrome is distinct from juvenile chronic myelogenous leukemia and other childhood myeloproliferative disorders. Genes Chromosomes Cancer, 1995; 12: 50–7.CrossRefGoogle ScholarPubMed
Michalova, K., Bartsch, O., Stary, J., et al.Partial trisomy of 3q detected by chromosome painting in a case of juvenile chronic myelomonocytic leukemia. Cancer Genet Cytogenet, 1993; 71: 67–70.CrossRefGoogle Scholar
Tosi, S., Mosna, G., Cazzaniga, G., et al.Unbalanced t(3;12) in a case of juvenile myelomonocytic leukemia (JMML) results in partial trisomy of 3q as defined by FISH. Leukemia, 1997; 11: 1465–8.CrossRefGoogle Scholar
Borkhardt, A., Bojesen, S., Haas, O. A., et al.The human GRAF gene is fused to MLL in a unique t(5;11)(q31;q23) and both alleles are disrupted in three cases of myelodysplastic syndrome/acute myeloid leukemia with a deletion 5q. Proc Natl Acad Sci U S A, 2000; 97: 9168–73.CrossRefGoogle Scholar
Amenomori, T., Tomonaga, M., Yoshida, Y., et al.Cytogenetic evidence for partially committed myeloid progenitor cell origin of chronic myelomonocytic leukaemia and juvenile chronic myeloid leukaemia: both granulocyte-macrophage precursors and erythroid precursors carry identical marker cells. Br J Haematol, 1986; 64: 539–46.CrossRefGoogle Scholar
Inoue, S., Shibata, T., Ravindranath, Y., et al.Clonal origin of erythroid cells in juvenile chronic myelogenous leukemia. Blood, 1987; 69: 975–6.Google ScholarPubMed
Flotho, C., Valcamonica, S., Mach-Pascula, S., et al.Ras mutations and clonality analysis in children with juvenile myelomonocytic leukemia (JMML). Leukemia, 1999; 13: 32–7.CrossRefGoogle Scholar
Busque, L., Gilliland, D. G., Prchal, J. T., et al.Clonality in juvenile chronic myelogenous leukemia. Blood, 1995; 85: 21–30.Google ScholarPubMed
Lau, R. C., Squire, J., Brisson, L., et al.Lymphoid blast crisis of B-lineage phenotype with monosomy 7 in a patient with juvenile chronic myelogenous leukemia (JCML). Leukemia, 1994; 8: 903–8.Google Scholar
Attias, D., Grunberger, T., Vanek, W., et al.B-lineage lymphoid blast crisis in juvenile chronic myelogenous leukemia: II. Interleukin-1-mediated autocrine growth regulation of the lymphoblasts. Leukemia, 1995; 9: 884–8.Google ScholarPubMed
Yamamoto, M., Nakagawa, M., Ichimura, N., et al.Lymphoblastic transformation of chronic myelomonocytic leukemia in an infant. Am J Hematol, 1996; 52: 212–14.3.0.CO;2-H>CrossRefGoogle ScholarPubMed
Nakazawa, T., Koike, K., Agematsu, K., et al.Cytogenetic clonality analysis in monosomy 7 associated with juvenile myelomonocytic leukemia: clonality in B and NK cells, but not in T cells. Leuk Res, 1998; 22: 887–92.CrossRefGoogle Scholar
Miles, D. K., Freedman, M. H., Stephens, K., et al.Patterns of hematopoietic lineage involvement in children with neurofibromatosis type 1 and malignant disorders. Blood, 1996; 88: 4314–20.Google Scholar
Neubauer, A., Greenberg, P., Negrin, R., et al.Mutations in the ras proto-oncogenes in patients with myelodysplastic syndromes. Leukemia, 1994; 8: 638–41.Google ScholarPubMed
Cooper, L. J., Shannon, K. M., Loken, M. R., et al.Evidence that juvenile myelomonocytic leukemia can arise from a pluripotential stem cell. Blood, 2000; 96: 2310–3.Google ScholarPubMed
Kirby, M. A., Weitzman, S., & Freedman, M. H.Juvenile chronic myelogenous leukemia: differentiation from infantile cytomegalovirus infection. Am J Pediatr Hematol Oncol, 1990; 12: 292–6.CrossRefGoogle ScholarPubMed
Herrod, H. G., Dow, L. W., & Sullivan, J. L.Persistent Epstein-Barr virus infection mimicking juvenile chronic myelogenous leukemia: immunologic and hematologic studies. Blood, 1983; 61: 1098–104.Google ScholarPubMed
Lorenzana, A., Lyons, H., Sawaf, H., et al.Human herpesvirus 6 infection mimicking juvenile myelomonocytic leukemia in an infant. J Pediatr Hematol Oncol, 2002; 24: 136–41.CrossRefGoogle ScholarPubMed
Yetgin, S., Cetin, M., Yenicesu, I., et al.Acute parvovirus B19 infection mimicking juvenile myelomonocytic leukemia. Eur J Haematol, 2000; 65: 276–8.CrossRefGoogle ScholarPubMed
Kuijpers, T. W., Lier, R. A., Hamann, D., et al.Leukocyte adhesion deficiency type 1 (LAD-1)/variant. A novel immunodeficiency syndrome characterized by dysfunctional beta2 integrins. J Clin Invest, 1997; 100: 1725–33.CrossRefGoogle ScholarPubMed
Altman, A. J., Palmer, C. G., & Baehner, R. L.Juvenile “chronic granulocytic” leukemia: a panmyelopathy with prominent monocytic involvement and circulating monocyte colony-forming cells. Blood, 1974; 43: 341–50.Google ScholarPubMed
Barak, Y., Levin, S., & Vogel, R.Juvenile and adult types of chronic granulocytic leukemia of childhood: growth patterns and characteristics of granulocytemacrophage colony forming cells. Am J Hematol, 1981; 10: 269–75.CrossRefGoogle Scholar
Suda, T., Miura, Y., Mizoguchi, H., et al.Characterization of hemopoietic precursor cells in juvenile-type chronic myelocytic leukemia. Leuk Res, 1982; 6: 43–53.CrossRefGoogle ScholarPubMed
Estrov, Z., Grunberger, T., Chan, H. S. L., et al.Juvenile chronic myelogenous leukemia: characterization of the disease using cell cultures. Blood, 1986; 67: 1382–7.Google ScholarPubMed
Bagby, G. C Jr., Dinarello, C. A., Neerhout, R. C., et al.Interleukin 1-dependent paracrine granulopoiesis in chronic granulocytic leukemia of the juvenile type. J Clin Invest, 1988; 82: 1430–6.CrossRefGoogle ScholarPubMed
Gualtieri, R. J., Emanuel, P. D., Zuckermann, K. S., et al.Granulocyte-macrophage colony-stimulating factor is an endogenous regulator of cell proliferation in juvenile chronic myelogenous leukemia. Blood, 1989; 74: 2360–7.Google ScholarPubMed
Freedman, M. H., Cohen, A., Grunberger, T., et al.Central role of tumour necrosis factor, GM-CSF, and interleukin 1 in the pathogenesis of juvenile chronic myelogenous leukaemia. Br J Haematol, 1992; 80: 40–8.CrossRefGoogle ScholarPubMed
Emanuel, P. D., Bates, L. J., Zhu, S. W., et al.The role of monocyte-derived hemopoietic growth factors in the regulation of myeloproliferation in juvenile chronic myelogenous leukemia. Exp Hematol, 1991; 19: 1017–24.Google ScholarPubMed
Freedman, M. H., Hitzler, J. K., Bunin, N., et al.Juvenile chronic myelogenous leukemia multilineage CD34+ cells: aberrant growth and differentiation properties. Stem Cells, 1996; 14: 690–701.CrossRefGoogle ScholarPubMed
Schiro, R., Longoni, D., Rossi, V., et al.Suppression of juvenile chronic myelogenous leukemia colony growth by interleukin-1 receptor antagonist. Blood, 1994; 83: 460–5.Google ScholarPubMed
Gualtieri, R. J., Castleberry, R. P., Gibbons, J., et al.Cell culture studies and oncogene expressions in juvenile chronic myelogenous leukemia. Exp Hematol, 1988; 16: 613–19.Google Scholar
Emanuel, P. D., Bates, L. J., Castleberry, R. P., et al.Selective hypersensitivity to granulocyte-macrophage colony-stimulating factor by juvenile chronic myeloid leukemia hematopoietic progenitors. Blood, 1991; 77: 925–9.Google ScholarPubMed
Lapidot, T., Grunberger, T., Vormoor, J., et al.Identification of human juvenile chronic myelogenous leukemia stem cells capable of initiating the disease in primary and secondary mice. Blood, 1996; 88: 2655–64.Google Scholar
Emanuel, P. D., Shannon, K. M., & Castleberry, R. P.Juvenile myelomonocytic leukemia: molecular understanding and prospects for therapy. Mol Med Today, 1996; 2: 468–75.CrossRefGoogle ScholarPubMed
Frankel, A. E., Lilly, M., Kreitman, R., et al.Diphtheria toxin fused to granulocyte-macrophage colony-stimulating factor is toxic to blasts from patients with juvenile myelomonocytic leukemia and chronic myelomonocytic leukemia. Blood, 1998; 92: 4279–86.Google ScholarPubMed
Iversen, P. O., Rodwell, R. L., Pitcher, L., et al.Inhibition of proliferation and induction of apoptosis in juvenile myelomonocytic leukemic cells by the granulocyte-macrophage colony-stimulating factor analogue E21R. Blood, 1996; 88: 2634–9.Google ScholarPubMed
Iversen, P. O., Lewis, I. D., Turczynowicz, S., et al.Inhibition of granulocyte-macrophage colony-stimulating factor prevents dissemination and induces remission of juvenile myelomonocytic leukemia in engrafted immunodeficient mice. Blood, 1997; 90: 4910–7.Google ScholarPubMed
Iversen, P. O., Hart, P. H., Bonder, C. S., et al.Interleukin (IL)-10, but not IL-4 or IL-13, inhibits cytokine production and growth in juvenile myelomonocytic leukemia cells. Cancer Res, 1997; 57: 476–80.Google ScholarPubMed
Iversen, P. O. & Sioud, M.Modulation of granulocyte-macrophage colony-stimulating factor gene expression by a tumor necrosis factor specific ribozyme in juvenile myelomonocytic leukemic cells. Blood, 1998; 92: 4263–8.Google ScholarPubMed
Kochetkova, M., Iversen, P. O., Lopez, A. F., et al.Deoxyribonucleic acid triplex formation inhibits granulocyte macrophage colony-stimulating factor gene expression and suppresses growth in juvenile myelomonocytic leukemic cells. J Clin Invest, 1997; 99: 3000–8.CrossRefGoogle ScholarPubMed
Emanuel, P. D., Zuckerman, K. S., Wimmer, R., et al.In vivo 13-cis retinoic acid therapy decreases the in vitro GM-CSF hypersensitivity in juvenile chronic myelogenous leukemia (JCML)[abstract]. Blood, 1991; 78(Suppl.1): 170a.Google Scholar
Castleberry, R. P., Emanuel, P. D., Zuckerman, K. S., et al.A pilot study of isotretinoin in the treatment of juvenile chronic myelogenous leukemia. N Engl J Med, 1994; 331: 1680–4.CrossRefGoogle ScholarPubMed
Cambier, N., Menot, M. L., Schlageter, M. H., et al.All trans retinoic acid abrogates spontaneous monocytic growth in juvenile chronic myelomonocytic leukaemia. Hematol J, 2001; 2: 97–102.CrossRefGoogle ScholarPubMed
Muccio, D. D., Brouillette, W. J., Breitman, T. R., et al.Conformationally defined retinoic acid analogues. 4. Potential new agents for acute promyelocytic and juvenile myelomonocytic leukemias. J Med Chem, 1998; 41: 1679–87.CrossRefGoogle ScholarPubMed
Emanuel, P. D., Sokol, J. M., & Castleberry, R. P.Characterization of early response gene expression in juvenile myelomonocyitc leukemia syndrome (JMML)[abstract]. Blood, 1995; 86(Suppl. 1): 728a.Google Scholar
Estrov, Z., Lau, A. S., Williams, B. R., et al.Recombinant human interferon alpha-2 and juvenile chronic myelogenous leukemia: cell receptor binding, enzymatic induction, and growth suppression in vitro. Exp Hematol, 1987; 15: 127–32.Google ScholarPubMed
Emanuel, P. D., Snyder, R. C., Wiley, T., et al.Inhibition of juvenile myelomonocytic leukemia cell growth in vitro by farnesyltransferase inhibitors. Blood, 2000; 95: 639–45.Google ScholarPubMed
Sawai, N., Koike, K., Ito, S., et al.Aberrant growth of granulocyte-macrophage progenitors in juvenile chronic myelogenous leukemia in serum-free culture. Exp Hematol, 1996; 24: 116–22.Google ScholarPubMed
Zhang, Y. Y., Vik, T. A., Ryder, J. W., et al.Nf1 regulates hematopoietic progenitor cell growth and ras signaling in response to multiple cytokines. J Exp Med, 1998; 187: 1893–902.CrossRefGoogle ScholarPubMed
Sawai, N., Koike, K., Higuchi, T., et al.Thrombopoietin enhances the production of myeloid cells, but not megakaryocytes, in juvenile chronic myelogenous leukemia. Blood, 1998; 91: 4065–73.Google Scholar
Symann, M., de Montpellier, C., Ninane, J., et al.“Spontaneous” erythroid progenitor cells in the circulation and monosomy 7 in juvenile chronic myelogenous leukemia. Cancer Genet Cytogenet, 1982; 6: 183–5.CrossRefGoogle ScholarPubMed
Freeburn, R. W., Gale, R. E., Wagner, H. M., et al.Analysis of the coding sequence for the GM-CSF receptor alpha and beta chains in patients with juvenile chronic myeloid leukemia (JCML). Exp Hematol, 1997; 25: 306–11.Google Scholar
Miyauchi, J., Asada, M., Sasaki, M., et al.Mutations of the N-ras gene in juvenile chronic myelogenous leukemia. Blood, 1994; 83: 2248–54.Google ScholarPubMed
Kalra, R., Paderanga, D. C., Olson, K., et al.Genetic analysis is consistent with the hypothesis that NF1 limits myeloid cell growth through p21ras. Blood, 1994; 84: 3435–9.Google ScholarPubMed
Sheng, X. M., Kawamura, M., Ohnishi, H., et al.Mutations of the RAS genes in childhood acute myeloid leukemia, myelodysplastic syndrome and juvenile chronic myelocytic leukemia. Leuk Res, 1997; 21: 697–701.CrossRefGoogle ScholarPubMed
Bollag, G., Clapp, D. W., Shih, S., et al.Loss of NF1 results in activation of the Ras signaling pathway and leads to aberrant growth in haematopoietic cells. Nat Genet, 1996; 12: 144–8.CrossRefGoogle ScholarPubMed
Shannon, K. M., O'Connell, P., Martin, G., et al.Loss of the normal NF1 allele from the bone marrow of children with type 1 neurofibromatosis and malignant disorders. N Engl J Med, 1994; 330: 597–601.CrossRefGoogle Scholar
Kai, S., Sumita, H., Fujioka, K., et al.Loss of heterozygosity of NF1 gene in juvenile chronic myelogenous leukemia with neurofibromatosis type 1. Int J Hematol, 1998; 68: 53–60.CrossRefGoogle ScholarPubMed
Jacks, T., Shih, T. S., Schmitt, E. M., et al.Tumor predisposition in mice heterozygous for a targeted mutation in NF1. Nat Genet, 1994; 7: 353–61.CrossRefGoogle ScholarPubMed
Largaespada, D. A., Brannan, C. I., Jenkins, N. A., et al.Nf1 deficiency causes Ras-mediated granulocyte/macrophage colony stimulating factor hypersensitivity and chronic myeloid leukaemia. Nat Genet, 1996; 12: 137–43.CrossRefGoogle ScholarPubMed
Birnbaum, R. A., O'Marcaigh, A., Wardak, Z., et al.Nf1 and GMCSF interact in myeloid leukemogenesis. Mol Cell, 2000; 5: 189–95.CrossRefGoogle ScholarPubMed
Ingram, D. A., Wenning, M. J., Shannon, K., et al.Leukemic potential of doubly mutant Nf1 and Wv hematopoietic cells. Blood, 2003; 101: 1984–6.CrossRefGoogle ScholarPubMed
Tartaglia, M., Kalidas, K., Shaw, A., et al.PTPN11 mutations in Noonan syndrome: molecular spectrum, genotype-phenotype correlation, and phenotypic heterogeneity. Am J Hum Genet, 2002; 70: 1555–63.CrossRefGoogle ScholarPubMed
Qu, C. K.Role of the SHP-2 tyrosine phosphatase in cytokine-induced signaling and cellular response. Biochim Biophys Acta, 2002; 1592: 297–301.CrossRefGoogle ScholarPubMed
Qu, C. K., Nguyen, S., Chen, J., et al.Requirement of Shp-2 tyrosine phosphatase in lymphoid and hematopoietic cell development. Blood, 2001; 97: 911–14.CrossRefGoogle ScholarPubMed
Hof, P., Pluskey, S., Dhe-Paganon, S., et al.Crystal structure of the tyrosine phosphatase SHP-2. Cell, 1998; 92: 441–50.CrossRefGoogle ScholarPubMed
Loh, M. L., Vattikuti, S., Schubbert, S.et al.Mutations in PTPN11 implicate the SHP-2 phosphatase in leukemogenesis. Blood, 2004; 103: 2325–31.CrossRefGoogle ScholarPubMed
Ferraris, S., Lanza, C., Barisone, E., et al.Transient abnormal myelopoiesis in Noonan syndrome. J Pediatr Hematol Oncol, 2002; 24: 763–4.Google Scholar
Niemeyer, C. M., Tartaglia, M., Büchner, J., et al.Clinical characteristic of children with juvenile myelomonocytic leukemia (JMML) and germline of somatic PTPN11 mutations, ras mutations or neurofibromatosis type 1[abstract]. Blood, 2002; 100: 796a.Google Scholar
Yar, A., Laffargue, M., Mayeux, P., et al.A critical role for phosphoinositide 3-kinase upstream of Gab1 and SHP2 in the activation of ras and mitogen-activated protein kinases by epidermal growth factor. J Biol Chem, 2001; 276: 8856–64.CrossRefGoogle Scholar
Cai, T., Nishida, K., Hirano, T., et al.Gab1 and SHP-2 promote Ras/MAPK regulation of epidermal growth and differentiation. J Cell Biol, 2002; 159: 103–12.CrossRefGoogle ScholarPubMed
Itoh, T., Liu, R., Arai, K., et al.Differential influence of tyrosine residues of the common receptor beta subunit on multiple signals induced by human GM-CSF. J Allergy Clin Immunol, 1999; 103: S462–70.CrossRefGoogle ScholarPubMed
Iversen, P. O., Turczynowicz, S., Lewis, J., et al.A second generation GM-CSF analogue that prevents dissemination and induces remission of human juvenile myelomonocytic leukemia in engrafted immunodeficient mice. Blood, 1997; 90: 4910–7.Google Scholar
Bernard, F., Thomas, C., Emile, J. F., et al.Transient hematologic and clinical effect of E21R in a child with end-stage juvenile myelomonocytic leukemia. Blood, 2002; 99: 2615–16.CrossRefGoogle Scholar
Mahgoub, N., Taylor, B. R., Gratiot, M., et al.In vitro and in vivo effects of a farnesyltransferase inhibitor on Nf1-deficient hematopoietic cells. Blood, 1999; 94: 2469–76.Google ScholarPubMed
Iversen, P. O., Emanuel, P. D., & Sioud, M.Targeting Raf-1 gene expression by a DNA enzyme inhibits juvenile myelomonocytic leukemia cell growth. Blood, 2002; 99: 4147–53.CrossRefGoogle ScholarPubMed
Donovan, S., See, W., Bonifas, J., et al.Hyperactivation of protein kinase B and ERK have discrete effects on survival, proliferation, and cytokine expression in Nf1-deficient myeloid cells. Cancer Cell, 2002; 2: 507–14.CrossRefGoogle ScholarPubMed
Blaydes, S. M., Kogan, S. C., Truong, B. T., et al.Retroviral integration at the Epi1 locus cooperates with Nf1 gene loss in the progression to acute myeloid leukemia. J Virol, 2001; 75: 9427–34.CrossRefGoogle ScholarPubMed
Gerhardt, T. M., Schmahl, G. E., Flotho, C., et al.Expression of the EVI-1 gene in haematopoietic cells of children with juvenile myelomonocytic leukaemia and normal donors. Br J Haematol, 1997; 99: 882–7.CrossRefGoogle ScholarPubMed
Privitera, E., Longoni, D., Brambillasca, F., et al.EVI-1 gene expression in myeloid clonogenic cells from juvenile myelomonocytic leukemia (JMML). Leukemia, 1997; 11: 2045–8.CrossRefGoogle Scholar
Luria, D., Avigad, S., Cohen, I. J., et al.p53 mutation as the second event in juvenile chronic myelogenous leukemia in a patient with neurofibromatosis type 1. Cancer, 1997; 80: 2013–18.3.0.CO;2-Z>CrossRefGoogle Scholar
Miyauchi, J., Asada, M., Tsunematsu, Y., et al.Abnormalities of the p53 gene in juvenile myelomonocytic leukaemia. Br J Haematol, 1999; 106: 980–6.CrossRefGoogle ScholarPubMed
Xu, F., Taki, T., Yang, H. W., et al.Tandem duplication of the FLT3 gene is found in acute lymphoblastic leukaemia as well as acute myeloid leukaemia but not in myelodysplastic syndrome or juvenile chronic myelogenous leukaemia in children. Br J Haematol, 1999; 105: 155–62.CrossRefGoogle ScholarPubMed
Lilleyman, J. S., Harrison, J. F., & Black, J. A.Treatment of juvenile chronic myeloid leukemia with sequential subcutaneus cytarabine and oral mercaptopurine. Blood, 1977; 49: 559–62.Google Scholar
Laver, J., Kushner, B. H., Steinherz, P. G.Juvenile chronic myeloid leukemia: therapeutic insights. Leukemia, 1987; 1: 730–3.Google ScholarPubMed
Hicsonmez, G., Cetin, M., Tunc, B., et al.Dramatic resolution of pleural effusion in children with chronic myelomonocytic leukemia following short-course high-dose methylprednisolone. Leuk Lymphoma, 1998; 29: 617–23.CrossRefGoogle ScholarPubMed
Chan, H. S., Estrov, Z., Weitzman, S. S., et al.The value of intensive combination chemotherapy for juvenile chronic myelogenous leukemia. J Clin Oncol, 1987; 5: 1960–7.CrossRefGoogle ScholarPubMed
DeHeredia, C. D., Ortega, J. J., Coll, M. T., et al.Results of intensive chemotherapy in children with juvenile chronic myelomonocytic leukemia: A pilot study. Med Pediatr Oncol, 1998; 31: 516–20.3.0.CO;2-Q>CrossRefGoogle Scholar
Woods, W. G., Barnard, D. R., Alonzo, T. A., et al.Prospective study of 90 children requiring treatment for juvenile myelomonocytic leukemia or myelodysplastic syndrome: a report from the Children's Cancer Group. J Clin Oncol, 2002; 20: 434–40.Google ScholarPubMed
Festa, R. S., Shende, A., & Lanzkowsky, P.Juvenile chronic myelocytic leukemia: experience with intensive combination chemotherapy. Med Pediatr Oncol, 1990; 18: 311–16.CrossRefGoogle ScholarPubMed
Hasle, H., Kerndrup, G., Yssing, M., et al.Intensive chemotherapy in childhood myelodysplastic syndrome. A comparison with results in acute myeloid leukemia. Leukemia, 1996; 10: 1269–73.Google ScholarPubMed
Mutz, I. D. & Zoubek, A.Transient response to alpha-interferon in juvenile chronic myelomonocytic leukemia. Pediatr Hematol Oncol, 1988; 5: 71–5.CrossRefGoogle ScholarPubMed
Suttorp, M., Rister, M., & Schmitz, N.Interferon-alpha-2 (IFN) plus hydroxyurea for treatment of juvenile chronic myelogenous leukemia. Med Pediatr Oncol, 1994; 22: 358–9.CrossRefGoogle ScholarPubMed
Aricò, M., Nespoli, L., Caselli, D., et al.Juvenile chronic myeloid leukaemia and alpha-interferon. Eur J Pediatr, 1989; 148: 379–80.CrossRefGoogle ScholarPubMed
Mirro, J., Dow, L. W., Kalwinsky, D. K., et al.Phase I–II study of continuous-infusion high-dose human lymphoblastoid interferon and the in vitro sensitivity of leukemic progenitors in nonlymphocytic leukemia. Cancer Treat Rep, 1986; 70: 363–7.Google ScholarPubMed
Hazani, A., Barak, Y., Berant, M., et al.Congenital juvenile chronic myelogenous leukemia: therapeutical trial with interferon alpha-2. Med Pediatr Oncol, 1993; 21: 73–6.CrossRefGoogle Scholar
Maybee, D., Dubowy, R., Krischer, J., et al.Unusual toxicity of high dose alpha interferon (aIFN) in the treatment of juvenile chronic myelogenous leukemia (JCML)[abstract]. Proc. Am. Soc. Clin. Oncol, 1992; 1: 950a.Google Scholar
Ohta, H., Kawai, M., Sawada, A., et al.Juvenile myelomonocytic leukemia relapsing after allogeneic bone marrow transplantation successfully treated with interferon-alpha. Bone Marrow Transplant, 2000; 26: 681–3.CrossRefGoogle ScholarPubMed
Pui, C. H. & Aricò, M.Isotretinoin for juvenile chronic myelogenous leukemia. N Engl J Med, 1995; 332: 1520–1.Google ScholarPubMed
Castelberry, R. P., Chang, M., Maybee, D., et al.A phase II study of 13-cis retinoic acid in juvenile myelomonocytic leukemia [abstract]. Blood, 1997; 90: 346a.Google Scholar
Maguire, A. M., Vowels, M. R., Russell, S., et al.Allogeneic bone marrow transplant improves outcome for juvenile myelomonocytic leukaemia. J Paediatr Child Health, 2002; 38: 166–9.CrossRefGoogle ScholarPubMed
Steinherz, P. G., Exelby, P. R., Young, J., et al.Splenectomy after angiographic embolization of the splenic artery in patients with massive splenomegaly and severe thrombocytopenia, in juvenile subacute myelomonocytic leukemia. Med Pediatr Oncol, 1984; 12: 28–32.CrossRefGoogle ScholarPubMed
Locatelli, F., Niemeyer, C., Angelucci, E., et al.Allogeneic bone marrow transplantation for chronic myelomonocytic leukemia in childhood: a report from the European Working Group on Myelodysplastic Syndrome in Childhood. J Clin Oncol, 1997; 15: 566–73.CrossRefGoogle Scholar
Bunin, N., Saunders, F., Leahey, A., et al.Alternative donor bone marrow transplantation for children with juvenile myelomonocytic leukemia. J Pediatr Hematol Oncol, 1999; 21: 479–85.CrossRefGoogle ScholarPubMed
Smith, F. O., King, R., Nelson, G., et al.Unrelated donor bone marrow transplantation for children with juvenile myelomonocytic leukaemia. Br J Haematol, 2002; 116: 716–24.CrossRefGoogle ScholarPubMed
Manabe, A., Okamura, J., Yumura-Yagi, K., et al.Allogeneic hematopoietic stem cell transplantation for 27 children with juvenile myelomonocytic leukemia diagnosed based on the criteria of the International JMML Working Group. Leukemia, 2002; 16: 645–9.CrossRefGoogle ScholarPubMed
Chown, S. R., Potter, M. N., Cornish, J., et al.Matched and mismatched unrelated donor bone marrow transplantation for juvenile chronic myeloid leukaemia. Br J Haematol, 1996; 93: 674–6.CrossRefGoogle ScholarPubMed
Matthes-Martin, S., Mann, G., Peters, C., et al.Allogeneic bone marrow transplantation for juvenile myelomonocytic leukaemia: a single centre experience and review of the literature. Bone Marrow Transplant, 2000; 26: 377–82.CrossRefGoogle ScholarPubMed
Peltier, J. Y., Girault, D., Debré, M., et al.Donor for BMT with haemoglobin H disease. Bone Marrow Transplant, 1993; 12: 81–4.Google ScholarPubMed
Donadieu, J., Stephan, J. L., Blanche, S., et al.Treatment of juvenile chronic myelomonocytic leukemia by allogeneic bone marrow transplantation. Bone Marrow Transplant, 1994; 13: 777–82.Google ScholarPubMed
Wagner, J. E., Broxmeyer, H. E., Byrd, R. L., et al.Transplantation of umbilical cord blood after myeloablative therapy: analysis of engraftment. Blood, 1992; 79: 1874–81.Google ScholarPubMed
MacMillan, M. L., Davies, S. M., Orchard, P. J., et al.Haemopoietic cell transplantation in children with juvenile myelomonocytic leukaemia. Br J Haematol, 1998; 103: 552–8.CrossRefGoogle ScholarPubMed
Ohnuma, K., Isoyama, K., Ikuta, K., et al.Cord blood transplantation from HLA-mismatched unrelated donors as a treatment for children with haematological malignancies. Br J Haematol, 2001; 112: 981–7.CrossRefGoogle ScholarPubMed
Locatelli, F., Noellke, P., Zecca, M., et al.Hematopoietic stem cell transplantation (HSCT) in children with juvenile myelomonocytic leukemia (JMML): results of the EWOG-MDS/EBMT trial. Blood, 2005; 105: 410–19.CrossRefGoogle ScholarPubMed
Sanders, J. E., Buckner, C. D., Thomas, E. D., et al.Allogeneic marrow transplantation for children with juvenile chronic myelogenous leukemia. Blood, 1988; 71: 1144–6.Google ScholarPubMed
Urban, C., Schwinger, W., Slavc, I., et al.Busulfan/cyclophosphamide plus bone marrow transplantation is not sufficient to eradicate the malignant clone in juvenile chronic myelogenous leukemia. Bone Marrow Transplant, 1990; 5: 353–6.Google Scholar
Rubie, H., Attal, M., Demur, C., et al.Intensified conditioning regimen with busulfan followed by allogeneic BMT in children with myelodysplastic syndromes. Bone Marrow Transplant, 1994; 13: 759–62.Google ScholarPubMed
Rassam, S. M., Katz, F., Chessells, J. M., et al.Successful allogeneic bone marrow transplantation in juvenile CML: conditioning or graft-versus-leukaemia effect ?Bone Marrow Transplant, 1993; 11: 247–50.Google ScholarPubMed
Kressler, E. J., Haas, O. A., Konig, M., et al.Extramedullary relapse despite graft-versus-leukemia effect after bone marrow transplantation in a girl with juvenile myelomonocytic leukemia. Leuk Lymphoma, 1999; 33: 597–600.CrossRefGoogle Scholar
Orchard, P. J., Miller, J. S., McGlennen, R., et al.Graft-versus-leukemia is sufficient to induce remission in juvenile myelomonocytic leukemia. Bone Marrow Transplant, 1998; 22: 201–3.CrossRefGoogle ScholarPubMed
Pamphilon, D. H., Cornish, J. M., Goodman, S., et al.Successful second unrelated donor BMT in a child with juvenile chronic myeloid leukaemia: documentation of chimaerism using the polymerase chain reaction. Bone Marrow Transplant, 1993; 11: 81–4.Google Scholar
Yoshimi, A., Locatelli, F., Trebo, M., et al.Treatment for patients relapsing with juvenile myelomonocytic leukemia after allogeneic stem cell transplantation: the EWOG-MDS study. Leuk Res, 2005(Suppl. 1); 516 [abstract].Google Scholar
Grier, H. E. & Civin, C. I. Myeloid leukemias, myelodysplasia and myeloproliferative disease in children. In , D. G. Nathan & , S. H. Orkin, eds., Hematology of Infancy and Childhood (Philadelphia, PA: W B. Saunders, 1998), pp. 1300–8.Google Scholar
Hall, G. W.Cytogenetic and molecular genetic aspects of childhood myeloproliferative/myelodysplastic disorders. Acta Haematol, 2002; 108: 171–9.CrossRefGoogle ScholarPubMed
Nowell, P. C. & Hungerford, D. A.A minute chromosome in human chronic granulocytic leukaemia. Science, 1960; 132: 1497.Google Scholar
Rowley, J. D.A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining [letter]. Nature, 1973; 243: 290–3.CrossRefGoogle Scholar
Kurzrock, R., Gutterman, J. U., & Talpaz, M.The molecular genetics of Philadelphia chromosome-positive leukemias. N Engl J Med, 1988; 319: 990–8.Google ScholarPubMed
Kurzrock, R., Kantarjian, H. M., Druker, B. J., et al.Philadelphia chromosome-positive leukemias: from basic mechanisms to molecular therapeutics. Ann Intern Med, 2003; 138: 819–30.CrossRefGoogle ScholarPubMed
Deininger, M. W., Goldman, J. M., & Melo, J. V.The molecular biology of chronic myeloid leukemia. Blood, 2000; 96: 3343–56.Google ScholarPubMed
Groffen, J., Stephenson, J. R., Heisterkamp, N., et al.Philadelphia chromosomal breakpoints are clustered within a limited region, bcr, on chromosome 22. Cell, 1984; 36: 93–9.CrossRefGoogle ScholarPubMed
Heisterkamp, N., Stam, K., Groffen, J., et al.Structural organization of the bcr gene and its role in the Ph’ translocation. Nature, 1985; 315: 758–61.CrossRefGoogle ScholarPubMed
Biernaux, C., Loos, M., Sels, A., et al.Detection of major bcr-abl gene expression at a very low level in blood cells of some healthy individuals. Blood, 1995; 86: 3118–22.Google Scholar
Kurzrock, R., Bueso-Ramos, C. E., Kantarjian, H., et al.BCR rearrangement-negative chronic myelogenous leukemia revisited. J Clin Oncol, 2001; 19: 2915–26.CrossRefGoogle ScholarPubMed
Sawyers, C. L.Chronic myeloid leukemia. N Engl J Med, 1999; 340: 1330–40.CrossRefGoogle ScholarPubMed
Kurzrock, R., Kantarjian, H. M., Shtalrid, M., et al.Philadelphia chromosome-negative chronic myelogenous leukemia without breakpoint cluster region rearrangement: a chronic myeloid leukemia with a distinct clinical course. Blood, 1990; 75: 445–52.Google ScholarPubMed
Emanuel, P. D.Myelodysplasia and myeloproliferative disorders in childhood: an update. Br J Haematol, 1999; 105: 852–63.CrossRefGoogle ScholarPubMed
Sokal, J. E., Cox, E. B., Baccarani, M., et al.Prognostic discrimination in “good-risk” chronic granulocytic leukemia. Blood, 1984; 63: 789–99.Google ScholarPubMed
Hasford, J., Pfirrmann, M., Hehlmann, R., et al.for the Writing Committee for the Collaborative CML Prognostic Factors Project Group. A new prognostic score for survival of patients with chronic myeloid leukemia treated with interferon alfa. J Natl Cancer Inst, 1998; 90: 850–8.CrossRefGoogle Scholar
Chronic Myeloid Leukemia Trialists, Collaborative Group. Interferon alfa versus chemotherapy for chronic myeloid leukemia: a meta-analysis of seven randomized trials. J Natl Cancer Inst, 1997; 89: 1616–20.CrossRef
The Italian Cooperative Study Group on Chronic Myeloid Leukemia. Interferon alfa-2a as compared with conventional chemotherapy for the treatment of chronic myeloid leukemia. N Engl J Med, 1994; 330: 820–5.CrossRef
Hehlmann, R., Heimpel, H., Hasford, J., et al.Randomized comparison of interferon-alpha with busulfan and hydroxyurea in chronic myelogenous leukemia. The German CML Study Group. Blood, 1994; 84: 4064–77.Google ScholarPubMed
Allan, N. C., Richards, S. M., & Shepherd, P. C.UK Medical Research Council randomised, multicentre trial of interferon-alpha n1 for chronic myeloid leukaemia: improved survival irrespective of cytogenetic response. The UK Medical Research Council's Working Parties for Therapeutic Trials in Adult Leukaemia. Lancet, 1995; 345: 1392–7.CrossRefGoogle ScholarPubMed
Baranger, L., Baruchel, A., Leverger, G., et al.Monosomy-7 in childhood hemopoietic disorder. Leukemia, 1990; 4: 345–9.Google Scholar
Guilhot, F., Chastang, C., Michallet, M., et al.Interferon alfa-2b combined with cytarabine versus interferon alone in chronic myelogenous leukemia. French Chronic Myeloid Leukemia Study Group. N Engl J Med, 1997; 337: 223–9.CrossRefGoogle ScholarPubMed
Baccarani, M., Rosti, G., de Vivo, A., et al.A randomized study of interferon-alpha versus interferon-alpha and low-dose arabinosyl cytosine in chronic myeloid leukemia. Blood, 2002; 99: 1527–35.CrossRefGoogle ScholarPubMed
Druker, B. J., Tamura, S., Buchdunger, E., et al.Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med, 1996; 2: 561–6.CrossRefGoogle ScholarPubMed
Druker, B. J. & Lydon, N. B.Lessons learned from the development of an abl tyrosine kinase inhibitor for chronic myelogenous leukemia. J Clin Invest, 2000; 105: 3–7.CrossRefGoogle ScholarPubMed
Druker, B. J. & Talpaz, M., Resta, D. J., et al.Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med, 2001; 344: 1031–7.CrossRefGoogle ScholarPubMed
Kantarjian, H., Sawyers, C., Hochhaus, A., et al.Hematologic and cytogenetic responses to imatinib mesylate in chronic myelogenous leukemia. N Engl J Med, 2002; 346: 645–52.CrossRefGoogle ScholarPubMed
Talpaz, M., Silver, R. T., Druker, B. J., et al.Imatinib induces durable hematologic and cytogenetic responses in patients with accelerated phase chronic myeloid leukemia: results of a phase 2 study. Blood, 2002; 99: 1928–37.CrossRefGoogle ScholarPubMed
Sawyers, C. L., Hochhaus, A., Feldman, E., et al.Imatinib induces hematologic and cytogenetic responses in patients with chronic myelogenous leukemia in myeloid blast crisis: results of a phase II study. Blood, 2002; 99: 3530–9.CrossRefGoogle ScholarPubMed
Kantarjian, H. M., Cortes, J., O'Brien, S., et al.Imatinib mesylate (STI571) therapy for Philadelphia chromosome-positive chronic myelogenous leukemia in blast phase. Blood, 2002; 99: 3547–53.CrossRefGoogle ScholarPubMed
O'Brien, S. G., Guilhot, F., & Larson, R. A.Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase myeloid leukaemia. N Engl J Med, 2003; 348: 994–1004.CrossRefGoogle Scholar
Weisberg, E. & Griffin, J. D.Mechanism of resistance to the ABL tyrosine kinase inhibitor STI571 in BCR/ABL-transformed hematopoietic cell lines. Blood, 2000; 95: 3498–505.Google ScholarPubMed
Gorre, M. E., Mohammed, M., Ellwood, K., et al.Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science, 2001; 293: 876–80.CrossRefGoogle ScholarPubMed
Bhatia, R., Holtz, M., Niu, N., et al.Persistence of malignant hematopoietic progenitors in chronic myelogenous leukemia patients in complete cytogenetic remission following imatinib mesylate treatment. Blood, 2003; 101: 4701–7.CrossRefGoogle ScholarPubMed
Goldman, J. M., Szydlo, R., Horowitz, M. M., et al.Choice of pretransplant treatment and timing of transplants for chronic myelogenous leukemia in chronic phase. Blood, 1993; 82: 2235–8.Google ScholarPubMed
Rhee, F., Szydlo, R. M., Hermans, J., et al.Long-term results after allogeneic bone marrow transplantation for chronic myelogenous leukemia in chronic phase: a report from the Chronic Leukemia Working Party of the European Group for Blood and Marrow Transplantation. Bone Marrow Transplant, 1997; 20: 553–60.CrossRefGoogle ScholarPubMed
Goldman, J. M., Apperley, J. F., Jones, L., et al.Bone marrow transplantation for patients with chronic myeloid leukemia. N Engl J Med, 1986; 314: 202–7.CrossRefGoogle ScholarPubMed
Hansen, J. A., Gooley, T. A., Martin, P. J., et al.Bone marrow transplants from unrelated donors for patients with chronic myeloid leukemia. N Engl J Med, 1998; 338: 962–8.CrossRefGoogle ScholarPubMed
McGlave, P. B., Shu, X. O., Wen, W., et al.Unrelated donor marrow transplantation for chronic myelogenous leukemia: 9 years' experience of the national marrow donor program. Blood, 2000; 95: 2219–25.Google ScholarPubMed
Davies, S. M., DeFor, T. E., McGlave, P. B., et al.Equivalent outcomes in patients with chronic myelogenous leukemia after early transplantation of phenotypically matched bone marrow from related or unrelated donors. Am J Med, 2001; 110: 339–46.CrossRefGoogle ScholarPubMed
Gratwohl, A., Hermans, J., Goldman, J. M., et al.Risk assessment for patients with chronic myeloid leukaemia before allogeneic blood or marrow transplantation. Chronic Leukemia Working Party of the European Group for Blood and Marrow Transplantation. Lancet, 1998; 352: 1087–92.CrossRefGoogle ScholarPubMed
Gamis, A. S., Haake, R., McGlave, P., et al.Unrelated-donor bone marrow transplantation for Philadelphia chromosome-positive chronic myelogenous leukemia in children. J Clin Oncol, 1993; 11: 834–8.CrossRefGoogle ScholarPubMed
Dini, G., Rondelli, R., Miano, M., et al.Unrelated-donor bone marrow transplantation for Philadelphia chromosome-positive chronic myelogenous leukemia in children: experience of eight european countries. The EBMT Paediatric Diseases Working Party. Bone Marrow Transplant, 1996; 18(Suppl. 2): 80–5.Google ScholarPubMed
Cwynarski, K., Roberts, I. A., Iacobelli, S., et al.Stem cell transplantation for chronic myeloid leukemia in children. Blood, 2003; 102: 1224–31.CrossRefGoogle ScholarPubMed
Sasazuki, T., Juji, T., Morishima, Y., et al.Effect of matching of class I HLA alleles on clinical outcome after transplantation of hematopoietic stem cells from an unrelated donor. Japan Marrow Donor Program. N Engl J Med, 1998; 339: 1177–85.CrossRefGoogle Scholar
Petersdorf, E. W., Gooley, T. A., Anasetti, C., et al.Optimizing outcome after unrelated marrow transplantation by comprehensive matching of HLA class I and II alleles in the donor and recipient. Blood, 1998; 92: 3515–20.Google Scholar
Kolb, H. J., Mittermuller, J., Clemm, C., et al.Donor leukocyte transfusions for treatment of recurrent chronic myelogenous leukemia in marrow transplant patients. Blood, 1990; 76: 2462–5.Google ScholarPubMed
Collins, R. H Jr., Shpilberg, O., Drobyski, W. R., et al.Donor leukocyte infusions in 140 patients with relapsed malignancy after allogeneic bone marrow transplantation. J Clin Oncol, 1997; 15: 433–44.CrossRefGoogle ScholarPubMed
Kolb, H. J., Schattenberg, A., Goldman, J. M., et al.Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients. European Group for Blood and Marrow Transplantation Working Party Chronic Leukemia. Blood, 1995; 86: 2041–50.Google Scholar
Locatelli, F.The role of repeat transplantation of haemopoietic stem cells and adoptive immunotherapy in treatment of leukaemia relapsing following allogeneic transplantation. Br J Haematol, 1998; 102: 633–8.CrossRefGoogle ScholarPubMed
Adamson, J. W., Fialkow, P. J., Murphy, S., et al.Polycythemia vera: stem-cell and probable clonal origin of the disease. N Engl J Med, 1976; 295: 913–16.CrossRefGoogle ScholarPubMed
Berlin, N. I.Diagnosis and classification of the polycythemias. Semin Hematol, 1975; 12: 339–51.Google ScholarPubMed
Pearson, T. C. & Messinezy, M.The diagnostic criteria of polycythaemia rubra vera. Leuk Lymphoma, 1996; 22(Suppl. 1): 87–93.Google ScholarPubMed
Pierre, R., Imbert, M., Thiele, J.,et al. Polycythemia vera. In , E. S. Jaffe, , N. L. Harris, , H. Stein, & , J. W. Vardiman, eds., World Health Organization Classification Of Tumours: Pathology and Genetics of Tumours of Haematopoitic and Lymphoid Tissues. (Lyon, France: IARC, 2001), pp. 32–4.Google Scholar
Kralovics, R., Passamonti, F., Buser, A. S., et al.A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med, 2005; 352: 1779–90.CrossRefGoogle ScholarPubMed
Goerttler, P. S., Steimle, C., Marz, E., et al.The Jak2V617F mutation, PRV-1 overexpression and EEC formation define a similar cohort of MPD patients. Blood, 2005; Jun 28 [Epub ahead of print].CrossRefGoogle ScholarPubMed
Frezzato, M., Ruggeri, M., Castaman, G., et al.Polycythemia vera and essential thrombocythemia in young patients. Haematologica, 1993; 78(Suppl. 2): 11–17.Google ScholarPubMed
Testa, J. R., Kanofsky, J. R., Rowley, J. D., et al.Karyotypic patterns and their clinical significance in polycythemia vera. Am J Hematol, 1981; 11: 29–45.CrossRefGoogle ScholarPubMed
Solberg, L. A Jr.Therapeutic options for essential thrombocythemia and polycythemia vera. Semin Oncol, 2002; 29(Suppl. 10): 10–5.CrossRefGoogle ScholarPubMed
Nand, S., Stock, W., Godwin, J., et al.Leukemogenic risk of hydroxyurea therapy in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Am J Hematol, 1996; 52: 42–6.3.0.CO;2-6>CrossRefGoogle ScholarPubMed
Prchal, J. T. & Sokol, L.“Benign erythrocytosis” and other familial and congenital polycythemias. Eur J Haematol, 1996; 57: 263–8.CrossRefGoogle ScholarPubMed
Kralovics, R. & Prchal, J. T.Genetic heterogeneity of primary familial and congenital polycythemia. Am J Hematol, 2001; 68: 115–21.CrossRefGoogle ScholarPubMed
Juvonen, E., Ikkala, E., Fyhrquist, F., et al.Autosomal dominant erythrocytosis caused by increased sensitivity to erythropoietin. Blood, 1991; 78: 3066–9.Google ScholarPubMed
de la, Chapelle, A., Traskelin, A. L., & Juvonen, E.Truncated erythropoietin receptor causes dominantly inherited benign human erythrocytosis. Proc Natl Acad Sci U S A, 1993; 90: 4495–9.CrossRefGoogle Scholar
Hasle, H.Incidence of essential thrombocythaemia in children. Br J Haematol, 2000; 110: 751.CrossRefGoogle ScholarPubMed
Taksin, A. L., Couedic, J. P., Dusanter-Fourt, I., et al.Autonomous megakaryocyte growth in essential thrombocythemia and idiopathic myelofibrosis is not related to a c-mpl mutation or to an autocrine stimulation by Mpl-L. Blood, 1999; 93: 125–39.Google Scholar
Dror, Y. & Blanchette, V. S.Essential thrombocythaemia in children. Br J Haematol, 1999; 107: 691–8.CrossRefGoogle ScholarPubMed
Murphy, S., Iland, H., Rosenthal, D., et al.Essential thrombocythemia: an interim report from the Polycythemia Vera Study Group. Semin Hematol, 1986; 23: 177–82.Google ScholarPubMed
Cortelazzo, S., Finazzi, G., Ruggeri, M., et al.Hydroxyurea for patients with essential thrombocythemia and a high risk of thrombosis. N Engl J Med, 1995; 332: 1132–6.CrossRefGoogle Scholar
Harrison, C. N., Campbell, P. J., Buck, G., et al.Hydroxyurea compared with anagrelide in high-risk essential thrombocythemia. N Engl J Med, 2005; 353: 33–45.CrossRefGoogle ScholarPubMed
Kondo, T., Okabe, M., Sanada, M., et al.Familial essential thrombocythemia associated with one-base deletion in the 5′-untranslated region of the thrombopoietin gene. Blood, 1998; 92: 1091–6.Google ScholarPubMed
Wiestner, A., Padosch, S. A., Ghilardi, N., et al.Hereditary thrombocythaemia is a genetically heterogeneous disorder: exclusion of TPO and MPL in two families with hereditary thrombocythaemia. Br J Haematol, 2000; 110: 104–9.CrossRefGoogle ScholarPubMed
Tefferi, A.Myelofibrosis with myeloid metaplasia. N Engl J Med, 2000; 342: 1255–65.CrossRefGoogle ScholarPubMed
Boxer, L. A., Camitta, B. M., Berenberg, W., et al.Myelofibrosis-myeloid metaplasia in childhood. Pediatrics, 1975; 55: 861–5.Google ScholarPubMed
Altura, R. A., Head, D. R., & Wang, W. C.Long-term survival of infants with idiopathic myelofibrosis. Br J Haematol, 2000; 109: 459–62.CrossRefGoogle ScholarPubMed
Sekhar, M., Prentice, H. G., Popat, U., et al.Idiopathic myelofibrosis in children. Br J Haematol, 1996; 93: 394–7.CrossRefGoogle ScholarPubMed
Dewald, G. W. & Wright, P. I.Chromosome abnormalities in the myeloproliferative disorders. Semin Oncol, 1995; 22: 341–54.Google ScholarPubMed
Varki, A., Lottenberg, R., Griffith, R., et al.The syndrome of idiopathic myelofibrosis. A clinicopathologic review with emphasis on the prognostic variables predicting survival. Medicine (Baltimore), 1983; 62: 353–71.CrossRefGoogle ScholarPubMed
Barosi, G., Berzuini, C., Liberato, L. N., et al.A prognostic classification of myelofibrosis with myeloid metaplasia. Br J Haematol, 1988; 70: 397–401.CrossRefGoogle ScholarPubMed
Dupriez, B., Morel, P., Demory, J. L., et al.Prognostic factors in agnogenic myeloid metaplasia: a report on 195 cases with a new scoring system. Blood, 1996; 88: 1013–18.Google ScholarPubMed
Tefferi, A., Elliot, M. A., Yoon, S. Y., et al.Clinical and bone marrow effects of interferon alfa therapy in myelofibrosis with myeloid metaplasia. Blood, 2001; 97: 1896.CrossRefGoogle ScholarPubMed
Elliott, M. A., Mesa, R. A., Li, C. Y., et al.Thalidomide treatment in myelofibrosis with myeloid metaplasia. Br J Haematol, 2002; 117: 288–96.CrossRefGoogle ScholarPubMed
Guardiola, P., Anderson, J. E., Bandini, G., et al.Allogeneic stem cell transplantation for agnogenic myeloid metaplasia: a European Group for Blood and Marrow Transplantation, Societe Francaise de Greffe de Moelle, Gruppo Italiano per il Trapianto del Midollo Osseo, and Fred Hutchinson Cancer Research Center Collaborative Study. Blood, 1999; 93: 2831–8.Google Scholar
Anderson, J. E., Tefferi, A., Craig, F., et al.Myeloablation and autologous peripheral blood stem cell rescue results in hematologic and clinical responses in patients with myeloid metaplasia with myelofibrosis. Blood, 2001; 98: 586–93.CrossRefGoogle ScholarPubMed
Brito-Babapulle, F.The eosinophilias, including the idiopathic hypereosinophilic syndrome. Br J Haematol, 2003; 121: 203–23.CrossRefGoogle ScholarPubMed
Bain, B., Pierre, R., Imbert, M., et al. Chronic eosinophilic leukemia/hypereosinophilic syndrome. In , E. S. Jaffe, , N. L. Harris, , H. Stein, & , J. W. Vardiman, eds., World Health Organization Classification of Tumours: Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues. (Lyon, France: IARC, 2001), pp. 29–34.Google Scholar
Aoki, Y., Nata, M., Hashiyada, M., et al.Sudden unexpected death in childhood due to eosinophilic myocarditis. Int J Legal Med, 1996; 108: 221–4.CrossRefGoogle ScholarPubMed
Kumar, K. A., Anjaneyulu, A., & Murthy, J. M.Idiopathic hypereosinophilic syndrome presenting as childhood hemiplegia. Postgrad Med J, 1992; 68: 831–3.CrossRefGoogle ScholarPubMed
Falade, A. G., Darbyshire, P. J., Raafat, F., et al.Hypereosinophilic syndrome in childhood appearing as inflammatory bowel disease. J Pediatr Gastroenterol Nutr, 1991; 12: 276–9.CrossRefGoogle ScholarPubMed
Horenstein, M. S., Humes, R., Epstein, M. L., et al.Loffler's endocarditis presenting in 2 children as fever with eosinophilia. Pediatrics, 2002; 110: 1014–18.CrossRefGoogle ScholarPubMed
Rauch, A. E., Amyot, K. M., Dunn, H. G., et al.Hypereosinophilic syndrome and myocardial infarction in a 15-year-old. Pediatr Pathol Lab Med, 1997; 17: 469–86.CrossRefGoogle Scholar
Schulman, H., Hertzog, L., Zirkin, H., et al.Cerebral sinovenous thrombosis in the idiopathic hypereosinophilic syndrome in childhood. Pediatr Radiol, 1999; 29: 595–7.CrossRefGoogle ScholarPubMed
Meeker, T. C., Hardy, D., Willman, C., et al.Activation of the interleukin-3 gene by chromosome translocation in acute lymphocytic leukemia with eosinophilia. Blood, 1990; 76: 285–9.Google ScholarPubMed
Hogan, M. B., Piktel, D., & Landreth, K. S.IL-5 production by bone marrow stromal cells: implications for eosinophilia associated with asthma. J Allergy Clin Immunol, 2000; 106: 329–36.CrossRefGoogle ScholarPubMed
Darbyshire, P. J., Shortland, D., Swansbury, G. J., et al.A myeloproliferative disease in two infants associated with eosinophilia and chromosome t(1;5) translocation. Br J Haematol, 1987; 66: 483–6.CrossRefGoogle Scholar
Michel, G., Thuret, I., Capodano, A. M., et al.Myelofibrosis in a child suffering from a hypereosinophilic syndrome with trisomy 8: response to corticotherapy. Med Pediatr Oncol, 1991; 19: 62–5.CrossRefGoogle Scholar
Sakamoto, K., Erdreich-Epstein, A., deClerck, Y., et al.Prolonged clinical response to vincristine treatment in two patients with idiopathic hypereosinophilic syndrome. Am J Pediatr Hematol Oncol, 1992; 14: 348–51.CrossRefGoogle ScholarPubMed
Bakhshi, S., Hamre, M., Mohamed, A. N., et al.t(5;9)(q11;q34): a novel familial translocation involving Abelson oncogene and association with hypereosinophilia. J Pediatr Hematol Oncol, 2003; 25: 82–4.CrossRefGoogle Scholar
Jani, K., Kempski, H. M., & Reeves, B. R.A case of myelodysplasia with eosinophilia having a translocation t(5;12) (q31;q13) restricted to myeloid cells but not involving eosinophils. Br J Haematol, 1994; 87: 57–60.CrossRefGoogle Scholar
Chusid, M. J., Dale, D. C., West, B. C., et al.The hypereosinophilic syndrome: analysis of fourteen cases with review of the literature. Medicine (Baltimore), 1975; 54: 1–27.CrossRefGoogle ScholarPubMed
Simon, H. U., Plotz, S. G., Dummer, R., et al.Abnormal clones of T cells producing interleukin-5 in idiopathic eosinophilia. N Engl J Med, 1999; 341: 1112–20.CrossRefGoogle ScholarPubMed
Markwell, H. S. & Wilson, E.Separation of hypereosinophilic syndrome from acute lymphoblastic leukemia with reactive eosinophilia. West J Med, 1983; 138: 269–70.Google ScholarPubMed
Cools, J., DeAngelo, D. J., Gotlib, J., et al.A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome. N Engl J Med, 2003; 348: 1201–4.CrossRefGoogle ScholarPubMed
Gleich, G. J., Leiferman, K. M., Pardanani, A., et al.Treatment of hypereosinophilic syndrome with imatinib mesilate. Lancet, 2002; 359: 1577–8.CrossRefGoogle ScholarPubMed
Valent, P., Akin, C., Sperr, W. R., et al.Diagnosis and treatment of systemic mastocytosis: state of the art. Br J Haematol, 2003; 122: 695–717.CrossRefGoogle ScholarPubMed
Hartmann, K. & Metcalfe, D. D.Pediatric mastocytosis. Hematol Oncol Clin North Am, 2000; 14: 625–40.CrossRefGoogle ScholarPubMed
Metcalfe, D. D.The liver, spleen, and lymph nodes in mastocytosis. J Invest Dermatol, 1991; 96: 45–6S.CrossRefGoogle ScholarPubMed
Valent, P., Akin, C., Sperr, W. R., et al.Aggressive systemic mastocytosis and related mast cell disorders: current treatment options and proposed response criteria. Leuk Res, 2003; 27: 635–41.CrossRefGoogle ScholarPubMed
Valent, P., Horny, H.-P., Li, C. Y., et al. Mastocytosis. In , E. S. Jaffe, , N. L. Harris, , H. Stein, & , J. W. Vardiman, eds., World Health Organization Classification of Tumours: Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues. (Lyon, France: IARC, 2001), pp. 293–302.Google Scholar
Valent, P.1995 Mack-Forster Award Lecture. Review. Mast cell differentiation antigens: expression in normal and malignant cells and use for diagnostic purposes. Eur J Clin Invest, 1995; 25: 715–20.CrossRefGoogle ScholarPubMed
Orfao, A., Escribano, L., Villarrubia, J., et al.Flow cytometric analysis of mast cells from normal and pathological human bone marrow samples: identification and enumeration. Am J Pathol, 1996; 149: 1493–9.Google ScholarPubMed
Longley, B. J., Tyrrell, L., Lu, S. Z., et al.Somatic c-KIT activating mutation in urticaria pigmentosa and aggressive mastocytosis: establishment of clonality in a human mast cell neoplasm. Nat Genet, 1996; 12: 312–14.CrossRefGoogle Scholar
Ma, Y., Zeng, S., Metcalfe, D. D., et al.The c-KIT mutation causing human mastocytosis is resistant to STI571 and other KIT kinase inhibitors; kinases with enzymatic site mutations show different inhibitor sensitivity profiles than wild-type kinases and those with regulatory-type mutations. Blood, 2002; 99: 1741–4.CrossRefGoogle Scholar
Travis, W. D., Li, C. Y., Bergstralh, E. J., et al.Systemic mast cell disease. Analysis of 58 cases and literature review. Medicine (Baltimore), 1988; 67: 345–68.Google ScholarPubMed
Sperr, W. R., Jordan, J. H., Fiegl, M., et al.Serum tryptase levels in patients with mastocytosis: correlation with mast cell burden and implication for defining the category of disease. Int Arch Allergy Immunol, 2002; 128: 136–41.CrossRefGoogle Scholar
Büttner, C., Henz, B. M., Welker, P., et al.Identification of activating c-kit mutations in adult-, but not in childhood-onset indolent mastocytosis: a possible explanation for divergent clinical behavior. J Invest Dermatol, 1998; 111: 1227–31.CrossRefGoogle Scholar
Longley, B. J Jr., Metcalfe, D. D., Tharp, M., et al.Activating and dominant inactivating c-KIT catalytic domain mutations in distinct clinical forms of human mastocytosis. Proc Natl Acad Sci U S A, 1999; 96: 1609–14.CrossRefGoogle ScholarPubMed
Azana, J. M., Torrelo, A., Mediero, I. G., et al.Urticaria pigmentosa: a review of 67 pediatric cases. Pediatr Dermatol, 1994; 11: 102–6.CrossRefGoogle ScholarPubMed
Vardiman, J. W., Brunning, R. D., & Harris, N. L. Chronic myeloproliferative disorders. In , E. S. Jaffe, , N. L. Harris, , H. Stein, & , J. W. Vardiman, eds., World Health Organization Classification of Tumours: Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues (Lyon, France: IARC, 2001), pp. 17–44.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Chronic myeloproliferative disorders
    • By Charlotte M. Niemeyer, Professor of Pediatrics Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University of Freiburg, Freiburg, Germany, Franco Locatelli, Professor of Pediatrics, Pediatric Hematology and Oncology, IRCCS Policlinico San Matteo, Pavia, Italy
  • Edited by Ching-Hon Pui
  • Book: Childhood Leukemias
  • Online publication: 01 July 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511471001.023
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Chronic myeloproliferative disorders
    • By Charlotte M. Niemeyer, Professor of Pediatrics Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University of Freiburg, Freiburg, Germany, Franco Locatelli, Professor of Pediatrics, Pediatric Hematology and Oncology, IRCCS Policlinico San Matteo, Pavia, Italy
  • Edited by Ching-Hon Pui
  • Book: Childhood Leukemias
  • Online publication: 01 July 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511471001.023
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Chronic myeloproliferative disorders
    • By Charlotte M. Niemeyer, Professor of Pediatrics Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University of Freiburg, Freiburg, Germany, Franco Locatelli, Professor of Pediatrics, Pediatric Hematology and Oncology, IRCCS Policlinico San Matteo, Pavia, Italy
  • Edited by Ching-Hon Pui
  • Book: Childhood Leukemias
  • Online publication: 01 July 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511471001.023
Available formats
×