Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-18T19:27:10.785Z Has data issue: false hasContentIssue false

15 - Major Histocompatibility Complex: Polymorphism from Coevolution

Published online by Cambridge University Press:  15 January 2010

Ulf Dieckmann
Affiliation:
International Institute for Applied Systems Analysis, Austria
Johan A. J. Metz
Affiliation:
Universiteit Leiden
Maurice W. Sabelis
Affiliation:
Universiteit van Amsterdam
Karl Sigmund
Affiliation:
Universität Wien, Austria
Get access

Summary

Introduction

There are many examples of pathogens adapting toward evasion of immune responses. Viruses, such as influenza, rapidly alter their genetic make-up, and each year there appear to be sufficient susceptible hosts that lack memory lymphocytes from previous influenza infections to give rise to a new epidemic (Both et al. 1983; Smith et al. 1999). During human immunodeficiency virus (HIV) infection, such alterations occur at an even faster rate, enabling the virus to escape repeatedly from the immune response within a single host (Nowak et al. 1991). Hosts, on the other hand, are selected for counteracting immune evasive strategies by pathogens. Since the generation time of hosts is typically much longer than that of pathogens, these host adaptations are expected to evolve much more slowly.

A well-known example commonly thought to reflect adaptation of hosts to pathogens is the polymorphism of major histocompatibility complex (MHC) molecules, which play a key role in cellular immune responses. When a pathogen infects a host cell, the proteins of the pathogen are degraded intracellularly, and a subset of the resultant peptides is loaded onto MHC molecules, which are transported to the cell surface. Once the peptides of a pathogen are presented on the surface of a cell in the groove of an MHC molecule, T lymphocytes can recognize them and mount an immune response.

The population diversity of MHC molecules is extremely large: for some MHC loci, over 100 different alleles have been identified (Parham and Ohta 1996; Vogel et al. 1999).

Type
Chapter
Information
Adaptive Dynamics of Infectious Diseases
In Pursuit of Virulence Management
, pp. 210 - 221
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×