Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-18T19:36:28.974Z Has data issue: false hasContentIssue false

18 - Implications of Sexual Selection for Virulence Management

Published online by Cambridge University Press:  15 January 2010

Ulf Dieckmann
Affiliation:
International Institute for Applied Systems Analysis, Austria
Johan A. J. Metz
Affiliation:
Universiteit Leiden
Maurice W. Sabelis
Affiliation:
Universiteit van Amsterdam
Karl Sigmund
Affiliation:
Universität Wien, Austria
Get access

Summary

Introduction: Sex and Coevolution

In contrast to asexual reproduction, sex involves a number of quite obvious dis-advantages (e.g., Williams 1975; Maynard Smith 1978; Stearns 1987; Michod and Levin 1987). The major disadvantage has been termed the “cost of meiosis” (Williams 1975): a female that reproduces sexually is only 50% related to her offspring, while an asexual female transmits 100% of her genes to each of her daughters. Hence, gene transmission is about twice as efficient in asexuals as in sexuals. The other disadvantages of sex are, for example, cellular mechanical costs, genetic damage through recombination, exposure to risks, mate choice, mate competition, etc. (see review in Lloyd 1980; Lewis 1987). Therefore, if asexuals had a survival probability comparable to sexuals, a mutation causing a female to produce only asexual daughters would, when introduced into a sexually reproducing population, rapidly increase in frequency and outcompete sexuals in numbers within a few generations (Williams 1975; Maynard Smith 1978). Why does this not happen? What are the advantages of sex, or what are the disadvantages of asexual reproduction?

One serious disadvantage of asexual clones is that they are likely to die out after some hundred or thousand generations because of a fatal mechanism called “Muller's ratchet” (Muller 1932). Roughly summarized,'s ratchet predicts that slightly deleterious mutations are accumulated in asexuals from generation to generation until the genome does not code for a viable organism any longer, and the population becomes extinct (e.g., Andersson and Hughes 1996).

Type
Chapter
Information
Adaptive Dynamics of Infectious Diseases
In Pursuit of Virulence Management
, pp. 248 - 261
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×