Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-767nl Total loading time: 0 Render date: 2024-07-15T09:53:54.536Z Has data issue: false hasContentIssue false

3 - Pest status and pest control

Published online by Cambridge University Press:  06 August 2009

Get access

Summary

Introduction

Pest status for arthropods in the urban environment is based, in part, on the continued presence of a species in or around the workplace and living space. Contributing to this is the potential medical or psychological reaction and economic loss linked to their occurrence. The continued presence of these animals is due, in part, to the relative ineffectiveness of control measures, and the existence of reservoir habitats and populations that provide for reinfestation. Long-term persistence and pest status of domestic and peridomestic arthropods are based on a network of small infestations in relatively unstable habitats, and large reservoir populations in relatively stable habitats. Reservoir habitats provide individuals or groups that can replenish local infestations and establish new ones. Without their reservoir populations, most of the common pest species would not sustain the abundance necessary for pest status.

Pest status is usually associated with a real or perceived medical threat, a persistent nuisance, or on economic loss. The majority of arthropods in this environment qualify for one or more of these categories. Pest status may change with the abundance of the pest species. It may begin as a nuisance by the presence of small numbers of individuals, then become a health threat by the presence of large numbers, and eventually an economic level is reached when control and repair are required.

Type
Chapter
Information
Urban Insects and Arachnids
A Handbook of Urban Entomology
, pp. 15 - 32
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Burn, A. J., T. H. Coaker, and P. C. Jepson (eds.) Integrated Pest Management. New York: Academic Press, 1988
Carson, R. L. Silent Spring. Boston, MA: Houghton Mifflin, 1962
Gorham, R. J.The significance for human health of insects in food. Annu. Rev. Entomol., 24 (1979), 209–24CrossRefGoogle Scholar
Kangas, E.The impact of human culture on insects, and especially on insect pests. Fennia, 85 (1961), 100–5Google Scholar
Kogan, M. (ed.) Ecological Theory and Integrated Pest Management Practice. New York: John Wiley, 1986
Krieger, R., J. Doull, D. Ecobichon et al. Handbook of Pesticide Toxicology. New York, NY: Academic Press, 2001
Metcalf, R. L. and R. A. Luckman (eds.) Introduction to Insect Pest Management. New York: John Wiley, 1994
Olkowski, W., Olkowski, H., Bosch, R., and Hom, R.. Ecosystem management: a framework for urban pest control. BioScience, 26 (1976), 384–9CrossRefGoogle Scholar
Pedigo, L. P. Entomology and Pest Management. New York: Macmillan, 1989
Raupp, M. J., Koehler, C. S., and Davidson, J. A.. Advances in implementing integrated pest management for woody landscape plants. Annu. Rev. Entomol., 37 (1992), 561–85CrossRefGoogle Scholar
Robinson, W. H. and Bao, N.. The pest status of Periplaneta fuliginosa in China. Proc. Wash. Entomol. Soc., 90 (1988), 401–6Google Scholar
Rust, M. K. Managing household pests. In Bennett, G. W. and J. M. Owens (eds.) Advances in Urban Pest Management, pp. 335–68. New York: Van Nostrand Reinold, 1986
Sawyer, A. J. and Casagrande, R. A.. Urban pest management: a conceptual framework. Urban Ecol., 7 (1983), 145–57CrossRefGoogle Scholar
Smith, D. C. and Raupp., M. J.Economic and environmental assessment of an integrated pest management program for community-owned landscape plants. J. Econ. Entomol., 79 (1986), 162–5CrossRefGoogle Scholar
Stern, V. M. and Smith, R. F.. The integrated control concept. Hilgardia, 29 (1959), 81–101CrossRefGoogle Scholar
Takahashi, F.A concept of pest management in urban green zones. Jpn J. Environ. Entomol. Zool., 3 (1991), 210–16Google Scholar
Alexander, J. O. D.Mites and skin disease. Clin. Med., 79 (1972), 14–19Google Scholar
Arlian, L. G.Arthropod allergens and human health. Annu. Rev. Entomol., 47 (2002), 395–433CrossRefGoogle ScholarPubMed
Armstrong, R. K. and Winfield, J. L.. Staphylinidae dermatitis on Okinawa. J. Med. Entomol., 5 (1968), 362CrossRefGoogle ScholarPubMed
Beard, R. L.Insect toxins and venoms. Annu. Rev. Entomol., 8 (1960), 1–18CrossRefGoogle Scholar
Bellas, T. E. Insects as a Cause of Inhalent Allergies. A Bibliography, 2nd edn. CSIRO Australia Division of Entomology report no. 25. Canberra: CSIRO, 1982
Bellas, T. E. Insects as a Cause of Inhalent Allergies. A Bibliography 1900–1987. Canberra: Division of Entomology, Commonwealth Scientific and Industrial Research Organization, 1989
Bernton, H. S. and Brown, H.. Insect allergy – preliminary studies of the cockroach. J. Allergy, 35 (1964), 506–13CrossRefGoogle ScholarPubMed
Bernton, H. S. and Brown, H.Insect allergy: the allergenicity of the excrement of the cockroach. Ann. Allergy, 28 (1970), 543–7Google ScholarPubMed
Bettini, S. (ed.) Arthropod Venoms. Berlin: Springer-Verlag, 1978
Biliotti, G., Passaleva, A., Romagnani, S., and Ricci, M.. Mites and house dust allergy. I. Comparison between house dust and mite (Dermatophagoides pteronyssinus and D. farinae) skin reactivity. Clin. Allergy, 2 (1972), 109–13CrossRefGoogle Scholar
Brenner, R. J., Barnes, K. C., Helm, R. M., and Williams, L. W.. Modernized society and allergies to arthropods. Am. Entomol., 37 (1991), 143–55CrossRefGoogle Scholar
Brown, L. L.Fire ant allergy. South. Med. J., 65 (1972), 273–7CrossRefGoogle ScholarPubMed
Bücherl, W. and E. E. Buckley (eds.). Venomous Animals and Their Venoms, vol. 3, Venomous Invertebrates. New York: Academic Press, 1972
Choovivathanavanich, P.Insect allergy: antigenicity of cockroach and its excrement. J. Med. Assoc. Thai., 57 (1974), 237–41Google ScholarPubMed
Cloudsley-Thompson, J.On being bitten and stung. Antenna(Lond.), 19 (1995), 177–80Google Scholar
Cormia, F. E.Carpet beetle dermatitis. J. A. M. A., 200 (1967), 799CrossRefGoogle Scholar
Feingold, B. F., Benjamini, E., and Michaeli, D.. The allergic responses to insect bites. Annu. Rev. Entomol., 13 (1968), 137–58CrossRefGoogle Scholar
Frankland, A. W.Bee sting allergy. Bee World, 57 (1976), 145–50CrossRefGoogle Scholar
Habermann, E.Bee and wasp venoms. Science, 177 (1972), 314–22CrossRefGoogle ScholarPubMed
Herman, J. and Cukerman, R.. Contact dermatitis due to ladybirds. Practitioner, 226 (1982), 311Google ScholarPubMed
Hewitt, M., Barrow, G. I., Miller, D. C., Turk, F., and Turk, S.. Mites in the personal environment and their role in skin disorders. Br. J. Dermatol., 89 (1973), 401–9CrossRefGoogle ScholarPubMed
Kang, B., Vellody, D., Homburger, H., and Yunginger, J. W.. Cockroach cause of allergic asthma. Its specificity and immunologic profile. J. Allergy Clin. Immunol., 63 (1979), 80–6CrossRefGoogle ScholarPubMed
Kawakami, T., Suto, C., Yagura, T., and Kumuda, N.. Studies on cockroach allergy I. Allergenicity of common domestic cockroaches in Japan. Jpn J. Sanit. Zool., 33 (1982), 233–8CrossRefGoogle Scholar
Kay, A. B., Gad El Rab, M. O., Stewart, J., and Erwa, H. H.. Widespread IgE-mediated hypersensitivity in Northern Sudan to the chironomid, Cladotanaytarsus lewisi (green nimitti). Clin. Exp. Immunol., 34 (1978), 106–10Google Scholar
Keegan, H. L. and W. V. McFarlane. Venomous and Poisonous Animals and Noxious Plants of the Pacific Region. New York: Macmillan, 1963
Kino, T. and Oshima, S.. Allergy to insects in Japan. I. The reaginic sensitivity to moth and butterfly in patients with bronchial asthma. J. Allergy Clinical Immun., 61 (1978), 10–16CrossRefGoogle ScholarPubMed
Langolis, C., Schulman, S., and Arbesman, C. E.. Immunological studies of caddis fly. J. Allergy, 34 (1963), 385–94CrossRefGoogle Scholar
Marcondes, C. B. Entomologia Médica e Veterinária (in Portuguese). São Paulo: Editora Atheneu, 2001
Piek, T. (ed.) Venoms of the Hymenoptera. Biochemical, Pharmacological and Behavioural Aspects. London: Academic Press, 1986
Ratcliffe, B. C.A case of tarantula-induced popular dermatitis. J. Med. Entomol., 13 (1977), 745–7CrossRefGoogle Scholar
Richman, P. G., Kahn, H. A., Turkeltaub, P. C., Malveaux, F. J., and Baer, H.. The important sources of German cockroach allergens as determined by RAST analyses. J. Allergy. Clin. Immunol., 73 (1984), 590–5CrossRefGoogle ScholarPubMed
Schmidt, J. O.Biochemistry of insect venom. Annu. Rev. Entomol., 27 (1982), 339–68CrossRefGoogle Scholar
Truit, G. W.The mushroom fly as a cause of bronchial asthma. Annu. Allergy, 9 (1951), 513–16Google Scholar
Tu, A. T. Venoms: chemistry and molecular biology. New York: John Wiley, 1977
Bronswijk, J. E. M. H.Dermatophagoides pteronyssinus (Trouessart, 1897) in mattress and floor dust in a temperate climate (Acari: Pyroglyphidae). J. Med. Entomol., 10 (1973), 63–70CrossRefGoogle Scholar
Bronswijk, J. E. M. H. and Sinha, R. N.. Pyroglyphid mites (Acari) and house dust allergy. J. Allergy, 47 (1971), 31–52Google ScholarPubMed
Viraben, R.Papular urticaria. A cutaneous sensitivity reaction to environmental arthropods. Ann. Dermatol. Vénéréol., 123 (1996), 751–6Google Scholar
Voorhorst, R., Spieksma-Boezeman, M. I. A., and Th. M. Spieksma, F.. Is a mite (Dermatophagoides sp.) the producer of the house dust allergen? Allergic Asthma, 10 (1964), 329Google ScholarPubMed
Voorhorst, R. and Th. M. Spieksma, F.. Recent progress in the house dust mite problem. Acta Allergol., 24 (1969), 115–23CrossRefGoogle ScholarPubMed
Wharton, G. W.House dust mites. J. Med. Entomol., 12 (1976), 577–621CrossRefGoogle ScholarPubMed
Wirtz, R. A.Occupational allergies to arthropods: documentation and prevention. Bull. Entomol. Soc. Am., 26 (1980), 356–60Google Scholar
Zschunke, E.Contact urticaria, contact dermatitis, and asthma from cockroaches. Arch. Dermatol., 114 (1978), 1715–16CrossRefGoogle ScholarPubMed
Croft, B. A. Arthropod Biological Control Agents and Pesticides. New York: John Wiley, 1990
DeBach, P. Biological Control by Natural Enemies. London: Cambridge University Press, 1974
Ferron, P.Biological control of insect pests by entomogenous fungi. Annu. Rev. Entomol., 23 (1978), 409–42CrossRefGoogle Scholar
Gaugler, R. and H. K. Kaya. Entomopathogenic Nematodes in Biological Control. Boca Raton, FL: CRC Press, 1990
Ridgway, R. L. and S. B. Vinson (eds.) Biological Control by Augmentation of Natural Enemies. New York: Plenum, 1977
Ara, I., Bina, S., Siddiqui, S., Shaleen, S., and Salimuzzamen, S.. Tricyclic diterpenes from the stem bark of Azadriachra indica. Planta Med., 56 (1990), 84–6CrossRefGoogle ScholarPubMed
Becker, N. and J. Margalit. Control of Dipteran pests by Bacillus thuringiensis. In Entwistle, P., M. J. Bailey, J. Cory, and S. Higgs (eds.) Bacillus thuringiensis: Its Uses and Future as a Biological Insecticide. London: John Wiley, 1993
Burges, H. D. Microbial Control of Pests and Plant Diseases, 1970–1980. New York: Academic Press, 1981
Burges, H. D. and Hurst, J. A.. Ecology of Bacillus thuringiensis in storage moths. J. Invert. Pathol., 30 (1977), 131–9CrossRefGoogle Scholar
Dharmshaktu, N. S., Prabhakaran, P. K., and Menon, P. K. M.. Laboratory study on the mosquito larvicidal properties of leaf and seed extract of the plant Agave americana. J. Trop. Med. Hyg., 90 (1987), 79–82Google ScholarPubMed
Margalit, J., N. Becker, C. Back, and A. Zaritsky. Bacillus thuringiensis subsp. israelensis as a biological control agent of mosquitoes and black flies. In Bacillus thuringiensis Biotechnology and Environmental Benefits, vol. 1, pp. 521–56
Mohsen, Z., Abdel-Latif, H., Jawad, M., Al-Saadi, M., and Al-Naib, A.. Mosquito larvicidal and ovipositional activity of Descurania sophia extract. Int. J. Crude Drug Res., 28 (1990), 77–80Google Scholar
Nakanishi, K.Recent studies on bioactive compounds from plants. J. Nat. Prod., 45 (1982), 15–26CrossRefGoogle Scholar
Ragoonanansingh, R. N., Njunwa, K. J., Curtis, C. F., and Becker, N.. A field study of Bacillus sphaericus for the control of culicine and anopheline mosquito larvae in Tanzania. Bull. Soc. Vect. Ecol., 17 (1992), 45–50Google Scholar
Whitten, M. J. and Foster, G. G.. Genetical methods of pest control. Annu. Rev. Entomol., 20 (1975), 461–76CrossRefGoogle ScholarPubMed
Yuan Fang-Yu, , Zhang Ji-Bin, , Xu Ba-Zhao, , and Becker, N.. Large-scale evaluation of Bacillus sphaericus C3–41 local products for controlling Culex quinquefaciatus in urban areas. Chinese J. Parasitic Disease Contr., 7 (1994), 123–7Google Scholar
Bebbington, P.Monosymptomatic hypochrondriasis, abnormal illness behavior and suicide. Br. J. Psychiatry, 128 (1976), 475–8CrossRefGoogle Scholar
Berrios, G. E.Tactile hallucinations: conceptual and historical aspects. J. Neurol. Neurosurg. Psych., 45 (1982), 285–93CrossRefGoogle ScholarPubMed
Berrios, G. E.Delusional parasitosis and physical disease. Compr. Psychiatry, 26 (1985), 395–403CrossRefGoogle ScholarPubMed
Bourgeois, M. L., Duhamel, P., and Verdoux, H.. Delusional parasitosis: folie à deux and an attempted murder of a family doctor. Br. J. Psychiatry, 161 (1992), 709–11CrossRefGoogle ScholarPubMed
Byrne, D. N., Carpenter, E. H., Thoms, E. M., and Cotty, S. T.. Public attitudes toward urban arthropods. Bull. Entomol. Soc. Am., 30 (1984), 40–4Google Scholar
Ekbom, K. A. Om des k Parasitofobierna. Stockholm: Svenska Psykiatriska Föreningens Förhandingar, 1937
Hinkle, N. C.Delusory parasitosis. Am. Entomol., 46 (2000), 17–25CrossRefGoogle Scholar
Hopkinson, G.Delusions of infestation. Acta Psychiatr. Scand., 46 (1970), 111–19CrossRefGoogle ScholarPubMed
Lyell, A.Delusional parasitosis. Br. J. Dermatol., 108 (1983), 485–99CrossRefGoogle Scholar
Marks, I. M.Classification of phobic disorders. Br. J. Psychiatry, 116 (1970), 377–86CrossRefGoogle ScholarPubMed
Mester, H.Induzierter ‘Dermatozoenwahn’. Psychiatr. Praxis, 8 (1975), 261–3Google Scholar
Morris, M.Delusional infestation. Br. J. Psychiatry, 159 (suppl. 14) (1991), 83–7Google Scholar
Morris, M., Moss, G., and Jolley, D.. When delusions of infestations afflict the elderly. Geriatr. Medi., 18 (1988), 57–60Google Scholar
Mumford, J.Entomophobia: the fear of arthropods. Antennae, 6 (1982), 156–7Google Scholar
Musalek, M. and Kutzer, E.. The frequency of shared delusions in delusions of infestations. Eur. Arch. Neurol. Sci., 239 (1990), 263–6CrossRefGoogle Scholar
Paulson, M. J. and Petrus, E. P.. Delusions of parasitosis: a psychological study. Psychosomatics, 10 (1969), 111–20CrossRefGoogle ScholarPubMed
Perrin, L.Des névrodermies parasitophobiques. Ann. Dermatol. Syphiligr.(Paris), 7 (1896), 129–38Google Scholar
Schrut, A. H. and Waldron, W. G.. Psychiatric and entomological aspects of delusory parasitosis. J. A. M. A., 186 (1963), 429–30CrossRefGoogle ScholarPubMed
Thirbierge, G.Les acrophobes. Ann. Dermatol. Syphiligr.(Paris), 5 (1894), 730–1Google Scholar
Zahner, G. E. P., Kasl, S. V., White, M., and Will, J. C.. Psychological consequences of infestation of the dwelling unit. Am. J. Publ. Health, 75 (1985), 1303–7CrossRefGoogle ScholarPubMed
Alexander, P., Kitchener, J. A., and Briscoe, H. V. A.. Inert dust insecticides. Parts I, II, III. Ann. Appl. Biol., 31 (1944), 143–59CrossRefGoogle Scholar
Batth, S.Evaluation of vinyl garment bags as chambers for paradichlorobenzene fumigation of fabric-insect pests. J. Econ. Entomol., 65 (1972), 1074–80CrossRefGoogle Scholar
Campbell, W. C. (ed.). Invermectin and Abamectin. New York: Springer-Verlag, 1989
Coats, J. R.Risks from natural versus synthetic insecticides. Annu. Rev. Entomol., 39 (1994), 489–515CrossRefGoogle ScholarPubMed
Denholm, I. and Rowland, M. W.. Tactics for managing pesticide resistance in arthropods: theory and practice. Annu. Rev. Entomol., 37 (1992), 91–112CrossRefGoogle ScholarPubMed
Ebeling, W.Physiochemical mechanisms for the removal of insect wax by means of finely divided powders. Hilgardia, 30 (1961), 531–64CrossRefGoogle Scholar
Elbert, A., R. Nauen, and W. Leicht. Imidacloprid, a novel chloronicotinyl insecticide: biological activity and agricultural importance. In Ishaaya, I. and D. Deghele (eds.) Insecticides with Novel Modes of Action, Mechanisms and Application. New York: Springer, 1998
Fields, P. G. and White, N. D. G.. Alternatives to methyl bromide treatments for stored-product and quarantine insects. Annu. Rev. Entomol., 47 (2002), 331–59CrossRefGoogle ScholarPubMed
Hayward, F. W. and Seymour, R. B.. Determination of the major constituents of cedar oil vapor in cedar chests. Anal. Chem., 20 (1948), 572–4CrossRefGoogle Scholar
Jepson, P. C. (ed.). Pesticides and Non-Target Invertebrates. New York: VCH, 1990
Karlson, P. and Lüscher, M.. Pheromones, a new term for a class of biologically active substances. Nature, 183 (1959), 55–6CrossRefGoogle ScholarPubMed
Lasota, J. A. and Dybas, R. F. A.. Avermectins, a novel class of compounds: implications for use in arthropod pest control. Annu. Rev. Entomol., 36 (1991), 91–117CrossRefGoogle ScholarPubMed
Laudani, H. and Clark, P. H.. The effects of red, white, and South American cedar chests and the various stages of the webbing clothes moth and black carpet beetle. J. Econ. Entomol., 47 (1954), 1107–11CrossRefGoogle Scholar
McEwen, F. L. and G. R. Stephenson. The Use and Significance of Pesticides in the Environment. New York: Wiley-Interscience, 1979
Menn, J. J. and M. Beroza (eds.) Insect Juvenile Hormones: Chemistry and Action. New York: Academic Press, 1972
Millar, J. G.Polyene hydrocarbons and epoxides: a second major class of lepidopteran sex attractant pheromones. Annu. Rev. Entomol., 45 (2000), 575–604CrossRefGoogle ScholarPubMed
Morgan, E. D. and N. B. Mandava. Insect Growth Regulators. Boca Raton, FL: CRC Press, 1987
Narahashi, T. and J. E. Chambers (eds.) Insecticide Action: From Molecule to Organism. New York: Plenum, 1989CrossRef
Renou, M. and Guerrero, A.. Insect parapheromones in olfaction research and semiochemical-based pest control strategies. Annu. Rev. Entomol., 45 (2000), 605–30CrossRefGoogle ScholarPubMed
Staal, G. B.Insect growth regulators with juvenile hormone activity. Annu. Rev. Entomol., 20 (1975), 417–60CrossRefGoogle ScholarPubMed
Ware, G. W. The Pesticide Book, 3rd edn. Fresno, CA: Thompson, 1989
Yamamoto, I.Mode of action of pyrethroids, nicotinoids, and rotenoids. Annu. Rev. Entomol., 15 (1970), 257–68CrossRefGoogle Scholar
Bergh, J.-E., Stengård Hansen, L., Vagn Jensen, K.-M., and Nielsen, P. V.. The effect of anoxic treatment on the larvae of six species of dermestids (Coleoptera). J. Appl. Entomol., 127 (2003), 317–21CrossRefGoogle Scholar
Ebeling, W. and Pence, R. J.. Relation of particle size to the penetration of subterranean termites through barriers of sand or cinders. J. Econ. Entomol., 50 (1957), 690–2CrossRefGoogle Scholar
Fields, P. G.The control of stored-product insects and mites with extreme temperatures. J. Stored Prod., 28 (1992), 89–118CrossRefGoogle Scholar
Hirabayashi, K., Nakazato, R., Ohara, A., and Okino, T.. A study on phototaxis for adult Chironomidae (Diptera) by artificial light in Lake Suwa. 2. Effect of the light trap intensity and interval of electric-killing insect traps using near-ultraviolet radiation. Jpn J. Sanit. Zool., 44 (1993), 299–306CrossRefGoogle Scholar
Hollingsworth, J. P., Hartsack, A. W., and Lindquist, D. A.. Influence of near ultraviolet output of attractant lamps on catches of insects by light traps. J. Econ. Entomol., 61 (1968), 515–21CrossRefGoogle Scholar
Ikeshoji, T.Attractive sounds for autochemosterilization of the male mosquitoes. Jpn J. Sanit. Zool., 33 (1982), 41–9CrossRefGoogle Scholar
Lenz, M. and Rumko, S.. Protection of buildings, other structures and materials in ground contact from attack by subterranean termites (Isoptera) with a physical barrier: a fine mesh of high-grade stainless steel. Sociobiology, 24 (1994), 1–16Google Scholar
Mathis, W., Smith, E. A., and Schoof, H. F.. Use of air barriers to prevent entrance of house flies. J. Econ. Entomol., 63 (1970), 29–31CrossRefGoogle ScholarPubMed
Ogawa, K.Field trapping of male midge Rheotantytarsus kyotoensis (Diptera: Chironomidae) by sounds. Jpn J. Sanit. Zool., 43 (1992), 77–80CrossRefGoogle Scholar
Pickens, L. G. and Thimijan, R. W.. Design parameters that affect the performance of UV-emitting traps in attracting house flies (Diptera: Muscidae). J. Econ. Entomol., 79 (1986), 1003–9CrossRefGoogle Scholar
Rawat, B. S.Physical barriers: non-toxic and eco-friendly alternatives to hazardous termiticides for buildings. Int. Pest Control, 44 (2002), 182–7Google Scholar
Rust, M. K., Paine, E. O., and Reierson, D. E.. Evaluation of freezing to control wood-destroying insects (Isoptera, Coleoptera). J. Econ. Entomol., 90 (1997), 1215–21CrossRefGoogle Scholar
Smith, L. E.Effects of cold acclimation on supercooling and survival of the rusty grain beetle, Cryptolestes ferrugineus (Stephens) (Coleoptera: Cucujidae) at subzero temperatures. Can. J. Zool., 48 (1970), 853–8CrossRefGoogle Scholar
Soderstrom, E. L.Effectiveness of green electroluminescent lamps for attracting stored-product insects. J. Econ. Entomol., 63 (1970), 726–31CrossRefGoogle Scholar
Tamashiro, M., J. R. Yates, and R. H. Ebesu. The Formosan subterranean termite in Hawaii: problems and control. In Tamashiro M. and N.-Y. Su (eds.) Biology and Control of the Formosan Subterranean Termite, pp. 15–22. Honolulu: College of Tropical Agriculture and Human Resources, University Hawaii, 1987
Tamashiro, M., Yates, J. R., Yamamoto, R. T., and Ebesu, R. H.. Tunneling behavior of Formosan subterranean termite and basalt barriers. Sociobiology, 19 (1991), 163–70Google Scholar
Thimijan, R. W. and Pickens, L. G.. A method for predicting house fly attraction of electromagnetic radiant energy. J. Econ. Entomol., 66 (1972), 95–100CrossRefGoogle Scholar
Thimijan, R. W., Pickens, L. G., and Morgan, N. O.. Responses of the house fly, stable fly and face fly to electromagnetic radiant energy. J. Econ. Entomol., 66 (1973), 1260–70CrossRefGoogle ScholarPubMed
Cherret, J. M. and G. R. Sager (eds.) Origins of Pest, Parasite, Disease and Waste Problems. Oxford: Blackwell, 1977
Fraenkel, G. and Blewett, M.. The natural foods and the food requirements of several species of stored food product insects. Trans. R. Entomol. Soc.Lond., 93 (1943), 457–90CrossRefGoogle Scholar
Freeman, J. A. Methods of spread of stored products insects and origin of infestation in stored products. In Proceedings of the Eighth International Congress of Entomology, Stockholm, Sweden, 1950, pp. 815–25
Haeseler, V.Anthropogene Biotype (Kahlschlag, Kiesgrub, Stadgärten) als Refugian fur Insekte, Untersucht am Beispiel der Hymenoptera Aculeata. Zool. Jahrb. Syst. Bd., 99 (1972), 133–212Google Scholar
Hatch, M. H.The origin and evolution of household insects. Biologist, 35 (1953), 57–66Google Scholar
Hickin, N. E.The common furniture beetle, Anobium punctatum (DeG.) (Coleoptera, Anobiidae): some notes on its outdoor occurrence. Entomologist, 86 (1953), 216–17Google Scholar
Hinton, H. E.Natural reservoirs of beetles of the family Dermestidae known to infest stored products, with notes on those found in spiders' webs. Proc. R. Entomol. Soc. Lond. Ser. A18 (1943), 33–42Google Scholar
Linsley, E. G.Insect food caches as reservoirs and original sources of some stored product pests. J. Econ. Entomol., 35 (1942), 434–9CrossRefGoogle Scholar
Robinson, W. H. Role of reservoir habitats and populations in the urban environment. In Jones, S., J. Zhai, and W. Robinson (eds.) Proc. of the 4th International Conference on Urban Pests., pp. 217–224. Blacksburg, VA: Pocahontas Press, 2002
Schmitz, G.Urban ruderal sites as secondary habitats for phytophagous insects. Verh. Ges. Okol., 26 (1996), 581–5Google Scholar
Schoof, H. F., Mail, G. A., and Savage, E.. Fly production sources in urban communities. J. Econ. Entomol., 47 (1954), 245–53CrossRefGoogle Scholar
Alexander, J. O. D.Mites and skin disease. Clin. Med., 79 (1972), 14–19Google Scholar
Arlian, L. G.Arthropod allergens and human health. Annu. Rev. Entomol., 47 (2002), 395–433CrossRefGoogle ScholarPubMed
Armstrong, R. K. and Winfield, J. L.. Staphylinidae dermatitis on Okinawa. J. Med. Entomol., 5 (1968), 362CrossRefGoogle ScholarPubMed
Beard, R. L.Insect toxins and venoms. Annu. Rev. Entomol., 8 (1960), 1–18CrossRefGoogle Scholar
Bellas, T. E. Insects as a Cause of Inhalent Allergies. A Bibliography, 2nd edn. CSIRO Australia Division of Entomology report no. 25. Canberra: CSIRO, 1982
Bellas, T. E. Insects as a Cause of Inhalent Allergies. A Bibliography 1900–1987. Canberra: Division of Entomology, Commonwealth Scientific and Industrial Research Organization, 1989
Bernton, H. S. and Brown, H.. Insect allergy – preliminary studies of the cockroach. J. Allergy, 35 (1964), 506–13CrossRefGoogle ScholarPubMed
Bernton, H. S. and Brown, H.Insect allergy: the allergenicity of the excrement of the cockroach. Ann. Allergy, 28 (1970), 543–7Google ScholarPubMed
Bettini, S. (ed.) Arthropod Venoms. Berlin: Springer-Verlag, 1978
Biliotti, G., Passaleva, A., Romagnani, S., and Ricci, M.. Mites and house dust allergy. I. Comparison between house dust and mite (Dermatophagoides pteronyssinus and D. farinae) skin reactivity. Clin. Allergy, 2 (1972), 109–13CrossRefGoogle Scholar
Brenner, R. J., Barnes, K. C., Helm, R. M., and Williams, L. W.. Modernized society and allergies to arthropods. Am. Entomol., 37 (1991), 143–55CrossRefGoogle Scholar
Brown, L. L.Fire ant allergy. South. Med. J., 65 (1972), 273–7CrossRefGoogle ScholarPubMed
Bücherl, W. and E. E. Buckley (eds.). Venomous Animals and Their Venoms, vol. 3, Venomous Invertebrates. New York: Academic Press, 1972
Choovivathanavanich, P.Insect allergy: antigenicity of cockroach and its excrement. J. Med. Assoc. Thai., 57 (1974), 237–41Google ScholarPubMed
Cloudsley-Thompson, J.On being bitten and stung. Antenna(Lond.), 19 (1995), 177–80Google Scholar
Cormia, F. E.Carpet beetle dermatitis. J. A. M. A., 200 (1967), 799CrossRefGoogle Scholar
Feingold, B. F., Benjamini, E., and Michaeli, D.. The allergic responses to insect bites. Annu. Rev. Entomol., 13 (1968), 137–58CrossRefGoogle Scholar
Frankland, A. W.Bee sting allergy. Bee World, 57 (1976), 145–50CrossRefGoogle Scholar
Habermann, E.Bee and wasp venoms. Science, 177 (1972), 314–22CrossRefGoogle ScholarPubMed
Herman, J. and Cukerman, R.. Contact dermatitis due to ladybirds. Practitioner, 226 (1982), 311Google ScholarPubMed
Hewitt, M., Barrow, G. I., Miller, D. C., Turk, F., and Turk, S.. Mites in the personal environment and their role in skin disorders. Br. J. Dermatol., 89 (1973), 401–9CrossRefGoogle ScholarPubMed
Kang, B., Vellody, D., Homburger, H., and Yunginger, J. W.. Cockroach cause of allergic asthma. Its specificity and immunologic profile. J. Allergy Clin. Immunol., 63 (1979), 80–6CrossRefGoogle ScholarPubMed
Kawakami, T., Suto, C., Yagura, T., and Kumuda, N.. Studies on cockroach allergy I. Allergenicity of common domestic cockroaches in Japan. Jpn J. Sanit. Zool., 33 (1982), 233–8CrossRefGoogle Scholar
Kay, A. B., Gad El Rab, M. O., Stewart, J., and Erwa, H. H.. Widespread IgE-mediated hypersensitivity in Northern Sudan to the chironomid, Cladotanaytarsus lewisi (green nimitti). Clin. Exp. Immunol., 34 (1978), 106–10Google Scholar
Keegan, H. L. and W. V. McFarlane. Venomous and Poisonous Animals and Noxious Plants of the Pacific Region. New York: Macmillan, 1963
Kino, T. and Oshima, S.. Allergy to insects in Japan. I. The reaginic sensitivity to moth and butterfly in patients with bronchial asthma. J. Allergy Clinical Immun., 61 (1978), 10–16CrossRefGoogle ScholarPubMed
Langolis, C., Schulman, S., and Arbesman, C. E.. Immunological studies of caddis fly. J. Allergy, 34 (1963), 385–94CrossRefGoogle Scholar
Marcondes, C. B. Entomologia Médica e Veterinária (in Portuguese). São Paulo: Editora Atheneu, 2001
Piek, T. (ed.) Venoms of the Hymenoptera. Biochemical, Pharmacological and Behavioural Aspects. London: Academic Press, 1986
Ratcliffe, B. C.A case of tarantula-induced popular dermatitis. J. Med. Entomol., 13 (1977), 745–7CrossRefGoogle Scholar
Richman, P. G., Kahn, H. A., Turkeltaub, P. C., Malveaux, F. J., and Baer, H.. The important sources of German cockroach allergens as determined by RAST analyses. J. Allergy. Clin. Immunol., 73 (1984), 590–5CrossRefGoogle ScholarPubMed
Schmidt, J. O.Biochemistry of insect venom. Annu. Rev. Entomol., 27 (1982), 339–68CrossRefGoogle Scholar
Truit, G. W.The mushroom fly as a cause of bronchial asthma. Annu. Allergy, 9 (1951), 513–16Google Scholar
Tu, A. T. Venoms: chemistry and molecular biology. New York: John Wiley, 1977
Bronswijk, J. E. M. H.Dermatophagoides pteronyssinus (Trouessart, 1897) in mattress and floor dust in a temperate climate (Acari: Pyroglyphidae). J. Med. Entomol., 10 (1973), 63–70CrossRefGoogle Scholar
Bronswijk, J. E. M. H. and Sinha, R. N.. Pyroglyphid mites (Acari) and house dust allergy. J. Allergy, 47 (1971), 31–52Google ScholarPubMed
Viraben, R.Papular urticaria. A cutaneous sensitivity reaction to environmental arthropods. Ann. Dermatol. Vénéréol., 123 (1996), 751–6Google Scholar
Voorhorst, R., Spieksma-Boezeman, M. I. A., and Th. M. Spieksma, F.. Is a mite (Dermatophagoides sp.) the producer of the house dust allergen? Allergic Asthma, 10 (1964), 329Google ScholarPubMed
Voorhorst, R. and Th. M. Spieksma, F.. Recent progress in the house dust mite problem. Acta Allergol., 24 (1969), 115–23CrossRefGoogle ScholarPubMed
Wharton, G. W.House dust mites. J. Med. Entomol., 12 (1976), 577–621CrossRefGoogle ScholarPubMed
Wirtz, R. A.Occupational allergies to arthropods: documentation and prevention. Bull. Entomol. Soc. Am., 26 (1980), 356–60Google Scholar
Zschunke, E.Contact urticaria, contact dermatitis, and asthma from cockroaches. Arch. Dermatol., 114 (1978), 1715–16CrossRefGoogle ScholarPubMed
Croft, B. A. Arthropod Biological Control Agents and Pesticides. New York: John Wiley, 1990
DeBach, P. Biological Control by Natural Enemies. London: Cambridge University Press, 1974
Ferron, P.Biological control of insect pests by entomogenous fungi. Annu. Rev. Entomol., 23 (1978), 409–42CrossRefGoogle Scholar
Gaugler, R. and H. K. Kaya. Entomopathogenic Nematodes in Biological Control. Boca Raton, FL: CRC Press, 1990
Ridgway, R. L. and S. B. Vinson (eds.) Biological Control by Augmentation of Natural Enemies. New York: Plenum, 1977
Ara, I., Bina, S., Siddiqui, S., Shaleen, S., and Salimuzzamen, S.. Tricyclic diterpenes from the stem bark of Azadriachra indica. Planta Med., 56 (1990), 84–6CrossRefGoogle ScholarPubMed
Becker, N. and J. Margalit. Control of Dipteran pests by Bacillus thuringiensis. In Entwistle, P., M. J. Bailey, J. Cory, and S. Higgs (eds.) Bacillus thuringiensis: Its Uses and Future as a Biological Insecticide. London: John Wiley, 1993
Burges, H. D. Microbial Control of Pests and Plant Diseases, 1970–1980. New York: Academic Press, 1981
Burges, H. D. and Hurst, J. A.. Ecology of Bacillus thuringiensis in storage moths. J. Invert. Pathol., 30 (1977), 131–9CrossRefGoogle Scholar
Dharmshaktu, N. S., Prabhakaran, P. K., and Menon, P. K. M.. Laboratory study on the mosquito larvicidal properties of leaf and seed extract of the plant Agave americana. J. Trop. Med. Hyg., 90 (1987), 79–82Google ScholarPubMed
Margalit, J., N. Becker, C. Back, and A. Zaritsky. Bacillus thuringiensis subsp. israelensis as a biological control agent of mosquitoes and black flies. In Bacillus thuringiensis Biotechnology and Environmental Benefits, vol. 1, pp. 521–56
Mohsen, Z., Abdel-Latif, H., Jawad, M., Al-Saadi, M., and Al-Naib, A.. Mosquito larvicidal and ovipositional activity of Descurania sophia extract. Int. J. Crude Drug Res., 28 (1990), 77–80Google Scholar
Nakanishi, K.Recent studies on bioactive compounds from plants. J. Nat. Prod., 45 (1982), 15–26CrossRefGoogle Scholar
Ragoonanansingh, R. N., Njunwa, K. J., Curtis, C. F., and Becker, N.. A field study of Bacillus sphaericus for the control of culicine and anopheline mosquito larvae in Tanzania. Bull. Soc. Vect. Ecol., 17 (1992), 45–50Google Scholar
Whitten, M. J. and Foster, G. G.. Genetical methods of pest control. Annu. Rev. Entomol., 20 (1975), 461–76CrossRefGoogle ScholarPubMed
Yuan Fang-Yu, , Zhang Ji-Bin, , Xu Ba-Zhao, , and Becker, N.. Large-scale evaluation of Bacillus sphaericus C3–41 local products for controlling Culex quinquefaciatus in urban areas. Chinese J. Parasitic Disease Contr., 7 (1994), 123–7Google Scholar
Bebbington, P.Monosymptomatic hypochrondriasis, abnormal illness behavior and suicide. Br. J. Psychiatry, 128 (1976), 475–8CrossRefGoogle Scholar
Berrios, G. E.Tactile hallucinations: conceptual and historical aspects. J. Neurol. Neurosurg. Psych., 45 (1982), 285–93CrossRefGoogle ScholarPubMed
Berrios, G. E.Delusional parasitosis and physical disease. Compr. Psychiatry, 26 (1985), 395–403CrossRefGoogle ScholarPubMed
Bourgeois, M. L., Duhamel, P., and Verdoux, H.. Delusional parasitosis: folie à deux and an attempted murder of a family doctor. Br. J. Psychiatry, 161 (1992), 709–11CrossRefGoogle ScholarPubMed
Byrne, D. N., Carpenter, E. H., Thoms, E. M., and Cotty, S. T.. Public attitudes toward urban arthropods. Bull. Entomol. Soc. Am., 30 (1984), 40–4Google Scholar
Ekbom, K. A. Om des k Parasitofobierna. Stockholm: Svenska Psykiatriska Föreningens Förhandingar, 1937
Hinkle, N. C.Delusory parasitosis. Am. Entomol., 46 (2000), 17–25CrossRefGoogle Scholar
Hopkinson, G.Delusions of infestation. Acta Psychiatr. Scand., 46 (1970), 111–19CrossRefGoogle ScholarPubMed
Lyell, A.Delusional parasitosis. Br. J. Dermatol., 108 (1983), 485–99CrossRefGoogle Scholar
Marks, I. M.Classification of phobic disorders. Br. J. Psychiatry, 116 (1970), 377–86CrossRefGoogle ScholarPubMed
Mester, H.Induzierter ‘Dermatozoenwahn’. Psychiatr. Praxis, 8 (1975), 261–3Google Scholar
Morris, M.Delusional infestation. Br. J. Psychiatry, 159 (suppl. 14) (1991), 83–7Google Scholar
Morris, M., Moss, G., and Jolley, D.. When delusions of infestations afflict the elderly. Geriatr. Medi., 18 (1988), 57–60Google Scholar
Mumford, J.Entomophobia: the fear of arthropods. Antennae, 6 (1982), 156–7Google Scholar
Musalek, M. and Kutzer, E.. The frequency of shared delusions in delusions of infestations. Eur. Arch. Neurol. Sci., 239 (1990), 263–6CrossRefGoogle Scholar
Paulson, M. J. and Petrus, E. P.. Delusions of parasitosis: a psychological study. Psychosomatics, 10 (1969), 111–20CrossRefGoogle ScholarPubMed
Perrin, L.Des névrodermies parasitophobiques. Ann. Dermatol. Syphiligr.(Paris), 7 (1896), 129–38Google Scholar
Schrut, A. H. and Waldron, W. G.. Psychiatric and entomological aspects of delusory parasitosis. J. A. M. A., 186 (1963), 429–30CrossRefGoogle ScholarPubMed
Thirbierge, G.Les acrophobes. Ann. Dermatol. Syphiligr.(Paris), 5 (1894), 730–1Google Scholar
Zahner, G. E. P., Kasl, S. V., White, M., and Will, J. C.. Psychological consequences of infestation of the dwelling unit. Am. J. Publ. Health, 75 (1985), 1303–7CrossRefGoogle ScholarPubMed
Alexander, P., Kitchener, J. A., and Briscoe, H. V. A.. Inert dust insecticides. Parts I, II, III. Ann. Appl. Biol., 31 (1944), 143–59CrossRefGoogle Scholar
Batth, S.Evaluation of vinyl garment bags as chambers for paradichlorobenzene fumigation of fabric-insect pests. J. Econ. Entomol., 65 (1972), 1074–80CrossRefGoogle Scholar
Campbell, W. C. (ed.). Invermectin and Abamectin. New York: Springer-Verlag, 1989
Coats, J. R.Risks from natural versus synthetic insecticides. Annu. Rev. Entomol., 39 (1994), 489–515CrossRefGoogle ScholarPubMed
Denholm, I. and Rowland, M. W.. Tactics for managing pesticide resistance in arthropods: theory and practice. Annu. Rev. Entomol., 37 (1992), 91–112CrossRefGoogle ScholarPubMed
Ebeling, W.Physiochemical mechanisms for the removal of insect wax by means of finely divided powders. Hilgardia, 30 (1961), 531–64CrossRefGoogle Scholar
Elbert, A., R. Nauen, and W. Leicht. Imidacloprid, a novel chloronicotinyl insecticide: biological activity and agricultural importance. In Ishaaya, I. and D. Deghele (eds.) Insecticides with Novel Modes of Action, Mechanisms and Application. New York: Springer, 1998
Fields, P. G. and White, N. D. G.. Alternatives to methyl bromide treatments for stored-product and quarantine insects. Annu. Rev. Entomol., 47 (2002), 331–59CrossRefGoogle ScholarPubMed
Hayward, F. W. and Seymour, R. B.. Determination of the major constituents of cedar oil vapor in cedar chests. Anal. Chem., 20 (1948), 572–4CrossRefGoogle Scholar
Jepson, P. C. (ed.). Pesticides and Non-Target Invertebrates. New York: VCH, 1990
Karlson, P. and Lüscher, M.. Pheromones, a new term for a class of biologically active substances. Nature, 183 (1959), 55–6CrossRefGoogle ScholarPubMed
Lasota, J. A. and Dybas, R. F. A.. Avermectins, a novel class of compounds: implications for use in arthropod pest control. Annu. Rev. Entomol., 36 (1991), 91–117CrossRefGoogle ScholarPubMed
Laudani, H. and Clark, P. H.. The effects of red, white, and South American cedar chests and the various stages of the webbing clothes moth and black carpet beetle. J. Econ. Entomol., 47 (1954), 1107–11CrossRefGoogle Scholar
McEwen, F. L. and G. R. Stephenson. The Use and Significance of Pesticides in the Environment. New York: Wiley-Interscience, 1979
Menn, J. J. and M. Beroza (eds.) Insect Juvenile Hormones: Chemistry and Action. New York: Academic Press, 1972
Millar, J. G.Polyene hydrocarbons and epoxides: a second major class of lepidopteran sex attractant pheromones. Annu. Rev. Entomol., 45 (2000), 575–604CrossRefGoogle ScholarPubMed
Morgan, E. D. and N. B. Mandava. Insect Growth Regulators. Boca Raton, FL: CRC Press, 1987
Narahashi, T. and J. E. Chambers (eds.) Insecticide Action: From Molecule to Organism. New York: Plenum, 1989CrossRef
Renou, M. and Guerrero, A.. Insect parapheromones in olfaction research and semiochemical-based pest control strategies. Annu. Rev. Entomol., 45 (2000), 605–30CrossRefGoogle ScholarPubMed
Staal, G. B.Insect growth regulators with juvenile hormone activity. Annu. Rev. Entomol., 20 (1975), 417–60CrossRefGoogle ScholarPubMed
Ware, G. W. The Pesticide Book, 3rd edn. Fresno, CA: Thompson, 1989
Yamamoto, I.Mode of action of pyrethroids, nicotinoids, and rotenoids. Annu. Rev. Entomol., 15 (1970), 257–68CrossRefGoogle Scholar
Bergh, J.-E., Stengård Hansen, L., Vagn Jensen, K.-M., and Nielsen, P. V.. The effect of anoxic treatment on the larvae of six species of dermestids (Coleoptera). J. Appl. Entomol., 127 (2003), 317–21CrossRefGoogle Scholar
Ebeling, W. and Pence, R. J.. Relation of particle size to the penetration of subterranean termites through barriers of sand or cinders. J. Econ. Entomol., 50 (1957), 690–2CrossRefGoogle Scholar
Fields, P. G.The control of stored-product insects and mites with extreme temperatures. J. Stored Prod., 28 (1992), 89–118CrossRefGoogle Scholar
Hirabayashi, K., Nakazato, R., Ohara, A., and Okino, T.. A study on phototaxis for adult Chironomidae (Diptera) by artificial light in Lake Suwa. 2. Effect of the light trap intensity and interval of electric-killing insect traps using near-ultraviolet radiation. Jpn J. Sanit. Zool., 44 (1993), 299–306CrossRefGoogle Scholar
Hollingsworth, J. P., Hartsack, A. W., and Lindquist, D. A.. Influence of near ultraviolet output of attractant lamps on catches of insects by light traps. J. Econ. Entomol., 61 (1968), 515–21CrossRefGoogle Scholar
Ikeshoji, T.Attractive sounds for autochemosterilization of the male mosquitoes. Jpn J. Sanit. Zool., 33 (1982), 41–9CrossRefGoogle Scholar
Lenz, M. and Rumko, S.. Protection of buildings, other structures and materials in ground contact from attack by subterranean termites (Isoptera) with a physical barrier: a fine mesh of high-grade stainless steel. Sociobiology, 24 (1994), 1–16Google Scholar
Mathis, W., Smith, E. A., and Schoof, H. F.. Use of air barriers to prevent entrance of house flies. J. Econ. Entomol., 63 (1970), 29–31CrossRefGoogle ScholarPubMed
Ogawa, K.Field trapping of male midge Rheotantytarsus kyotoensis (Diptera: Chironomidae) by sounds. Jpn J. Sanit. Zool., 43 (1992), 77–80CrossRefGoogle Scholar
Pickens, L. G. and Thimijan, R. W.. Design parameters that affect the performance of UV-emitting traps in attracting house flies (Diptera: Muscidae). J. Econ. Entomol., 79 (1986), 1003–9CrossRefGoogle Scholar
Rawat, B. S.Physical barriers: non-toxic and eco-friendly alternatives to hazardous termiticides for buildings. Int. Pest Control, 44 (2002), 182–7Google Scholar
Rust, M. K., Paine, E. O., and Reierson, D. E.. Evaluation of freezing to control wood-destroying insects (Isoptera, Coleoptera). J. Econ. Entomol., 90 (1997), 1215–21CrossRefGoogle Scholar
Smith, L. E.Effects of cold acclimation on supercooling and survival of the rusty grain beetle, Cryptolestes ferrugineus (Stephens) (Coleoptera: Cucujidae) at subzero temperatures. Can. J. Zool., 48 (1970), 853–8CrossRefGoogle Scholar
Soderstrom, E. L.Effectiveness of green electroluminescent lamps for attracting stored-product insects. J. Econ. Entomol., 63 (1970), 726–31CrossRefGoogle Scholar
Tamashiro, M., J. R. Yates, and R. H. Ebesu. The Formosan subterranean termite in Hawaii: problems and control. In Tamashiro M. and N.-Y. Su (eds.) Biology and Control of the Formosan Subterranean Termite, pp. 15–22. Honolulu: College of Tropical Agriculture and Human Resources, University Hawaii, 1987
Tamashiro, M., Yates, J. R., Yamamoto, R. T., and Ebesu, R. H.. Tunneling behavior of Formosan subterranean termite and basalt barriers. Sociobiology, 19 (1991), 163–70Google Scholar
Thimijan, R. W. and Pickens, L. G.. A method for predicting house fly attraction of electromagnetic radiant energy. J. Econ. Entomol., 66 (1972), 95–100CrossRefGoogle Scholar
Thimijan, R. W., Pickens, L. G., and Morgan, N. O.. Responses of the house fly, stable fly and face fly to electromagnetic radiant energy. J. Econ. Entomol., 66 (1973), 1260–70CrossRefGoogle ScholarPubMed
Cherret, J. M. and G. R. Sager (eds.) Origins of Pest, Parasite, Disease and Waste Problems. Oxford: Blackwell, 1977
Fraenkel, G. and Blewett, M.. The natural foods and the food requirements of several species of stored food product insects. Trans. R. Entomol. Soc.Lond., 93 (1943), 457–90CrossRefGoogle Scholar
Freeman, J. A. Methods of spread of stored products insects and origin of infestation in stored products. In Proceedings of the Eighth International Congress of Entomology, Stockholm, Sweden, 1950, pp. 815–25
Haeseler, V.Anthropogene Biotype (Kahlschlag, Kiesgrub, Stadgärten) als Refugian fur Insekte, Untersucht am Beispiel der Hymenoptera Aculeata. Zool. Jahrb. Syst. Bd., 99 (1972), 133–212Google Scholar
Hatch, M. H.The origin and evolution of household insects. Biologist, 35 (1953), 57–66Google Scholar
Hickin, N. E.The common furniture beetle, Anobium punctatum (DeG.) (Coleoptera, Anobiidae): some notes on its outdoor occurrence. Entomologist, 86 (1953), 216–17Google Scholar
Hinton, H. E.Natural reservoirs of beetles of the family Dermestidae known to infest stored products, with notes on those found in spiders' webs. Proc. R. Entomol. Soc. Lond. Ser. A18 (1943), 33–42Google Scholar
Linsley, E. G.Insect food caches as reservoirs and original sources of some stored product pests. J. Econ. Entomol., 35 (1942), 434–9CrossRefGoogle Scholar
Robinson, W. H. Role of reservoir habitats and populations in the urban environment. In Jones, S., J. Zhai, and W. Robinson (eds.) Proc. of the 4th International Conference on Urban Pests., pp. 217–224. Blacksburg, VA: Pocahontas Press, 2002
Schmitz, G.Urban ruderal sites as secondary habitats for phytophagous insects. Verh. Ges. Okol., 26 (1996), 581–5Google Scholar
Schoof, H. F., Mail, G. A., and Savage, E.. Fly production sources in urban communities. J. Econ. Entomol., 47 (1954), 245–53CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×