Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-m9pkr Total loading time: 0 Render date: 2024-07-11T21:27:36.151Z Has data issue: false hasContentIssue false

71 - Human cytomegalovirus vaccines

from Part VII - Vaccines and immunothgerapy

Published online by Cambridge University Press:  24 December 2009

Thomas C. Heineman
Affiliation:
Division of Infectious Diseases and Immunology Saint Louis University School of Medicine, Missouri, USA
Ann Arvin
Affiliation:
Stanford University, California
Gabriella Campadelli-Fiume
Affiliation:
Università degli Studi, Bologna, Italy
Edward Mocarski
Affiliation:
Emory University, Atlanta
Patrick S. Moore
Affiliation:
University of Pittsburgh
Bernard Roizman
Affiliation:
University of Chicago
Richard Whitley
Affiliation:
University of Alabama, Birmingham
Koichi Yamanishi
Affiliation:
University of Osaka, Japan
Get access

Summary

Efforts to develop a human cytomegalovirus (HCMV) vaccine began more than 30 years ago in response to then recent reports that HCMV was capable of causing severe congenital disease. During the intervening years, our understanding of HCMV biology and immunology has increased dramatically. That knowledge, coupled with the introduction of several new vaccine methodologies, opened the door to an impressive expansion of HCMV vaccine research, particularly during the past decade. This chapter focuses on the principles underlying HCMV vaccine development and on the vaccine approaches that are currently under investigation.

Cytomegalovirus and human disease

The manifestations of HCMV infection vary with the age and immunocompetence of the host. In both adults and children, HCMV infection is usually asymptomatic. On rare occasions, otherwise healthy adults with primary HCMV infection will experience an infectious mononucleosis-like syndrome, with prolonged fever and mild hepatitis (Cohen and Corey, 1985). However, HCMV can cause serious morbidity and mortality when the host is unable to mount an adequate immune response or when infection is acquired in utero.

Congenital HCMV infection occurs in about 1% of children born in the USA, resulting in approximately 40 000 new infections each year (Pass and Burke, 2002; Plotkin, 1999). More than 90% of infected infants are asymptomatic at birth, and most will escape serious consequences of HCMV infection.

Type
Chapter
Information
Human Herpesviruses
Biology, Therapy, and Immunoprophylaxis
, pp. 1274 - 1291
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adler, S. P. (1988). Molecular epidemiology of cytomegalovirus: viral transmission among children attending a day care center, their parents, and caretakers. J. Pediatr., 112, 366–372.CrossRefGoogle Scholar
Adler, S. P. (1996). Current prospects for immunization against cytomegaloviral disease. Infect. Agents. Dis., 5, 29–35.Google ScholarPubMed
Adler, S. P., Starr, S. E., Plotkin, S. A.et al. (1995). Immunity induced by primary human cytomegalovirus infection protects against secondary infection among women of childbearing age. J. Infect. Dis., 171, 26–32.CrossRefGoogle ScholarPubMed
Adler, S. P., Finney, J. W., Manganello, A. M., and Best, A. M. (1996). Prevention of child-to-mother transmision of cytomegalovirus by changing behaviors: a randomized controlled trial. Pediatr. Infect. Dis. J., 15, 240–246.CrossRefGoogle Scholar
Adler, S. P., Hempfling, S. H., Starr, S. E., Plotkin, S. A., and Riddell, S. (1998). Safety and immunogenicity of the Towne strain cytomegalovirus vaccine. Pediatr. Infect. Dis. J., 17, 200–206.CrossRefGoogle ScholarPubMed
Adler, S. P., Plotkin, S. A., Gonczol, E.et al. (1999). A canarypox vector expressing cytomegalovirus (CMV) glycoprotein B primes for antibody responses to a live attenuated CMV vaccine (Towne). J. Infect. Dis., 180, 843–846.CrossRefGoogle Scholar
Ahlfors, K., Ivarsson, S. A., and Harris, S. (1999). Report on a long-term study of maternal and congenital cytomegalovirus infection in Sweden. Review of prospective studies available in the literature. Scand. J. Infect. Dis., 31, 443–457.Google ScholarPubMed
Akiyama, Y., Maruyama, K., Mochizuki, T., Sasaki, K., Takaue, Y., and Yamaguchi, K. (2002). Identification of HLA-A24-restricted CTL epitope encoded by the matrix protein pp65 of human cytomegalovirus. Immunol. Lett., 83, 21–30.CrossRefGoogle ScholarPubMed
Baldick, C. J. Jr. and Shenk, T. (1996). Proteins associated with purified human cytomegalovirus particles. J. Virol., 70, 6097–6105.Google ScholarPubMed
Balfour, H. H. (1991). Prevention of cytomegalovirus disease in renal allograft recipients. Scand. J. Infect. Dis., 78, 88–93.Google Scholar
Bartlett, E. J., Cull, V. S., Brekalo, N. L., Lenzo, J. C., and James, C. M. (2002). Synergy of type I interferon-A6 and interferon-B naked DNA immunotherapy for cytomegalovirus infection. Immunol. Cell Biol., 80, 425–435.CrossRefGoogle ScholarPubMed
Baxby, D. and Paoletti, E. (1992). Potential use of non-replicating vectors as recombinant vaccines. Vaccine, 10, 8–9.CrossRefGoogle ScholarPubMed
Berencsi, K., Gyulai, Z., Gonczol, E.et al. (2001). A canarypox vector-expressing cytomegalovirus (CMV) phosphoprotein 65 induces long-lasting cytotoxic T cell responses in human CMV-seronegative subjects. J. Infect. Dis., 183, 1171–1179.CrossRefGoogle ScholarPubMed
Bernstein, D. I., Schleiss, M. R., Berencsi, K.et al. (2002). Effect of previous or simultaneous immunization with canarypox expressing cytomegalovirus (CMV) glycoprotein B (gB) on response to subunit gB vaccine plus MF59 in healthy CMV-seronegative adults. J. Infect. Dis., 185, 686–690.CrossRefGoogle ScholarPubMed
Bia, F. J., Griffith, B. P., Tarsio, M., and Hsiung, G. D. (1980). Vaccination for the prevention of maternal and fetal infection with guinea pig cytomegalovirus. J. Infect. Dis., 142, 732–738.CrossRefGoogle ScholarPubMed
Boeckh, M., Gooley, T. A., Myerson, D., Cunningham, T., Schoch, G., and Bowden, R. A. (1996). Cytomegalovirus pp65 antigenemia-guided early treatment with ganciclovir versus ganciclovir at engraftment after allogeneic marrow transplantation: a randomized double-blind study. Blood, 88, 4063–4071.Google ScholarPubMed
Bolds, S., Ohlin, M., Garten, W., and Radsak, K. (1996). Structural domains involved in human cytomegalovirus glycoprotein B-mediated cell-cell fusion. J. Gen. Virol., 77, 2297–2302.CrossRefGoogle Scholar
Boppana, S. B. and Britt, W. J. (1996). Recognition of human cytomegalovirus gene products by HCMV-specific cytotoxic T cells. Virology, 222, 293–296.CrossRef
Boppana, S. B., Fowler, K. B., Britt, W. J., Stagno, S., and Pass, R. F. (1999). Symptomatic congenital cytomegalovirus infection in infants born to mothers with preexisting immunity to cytomegalovirus. Pediatrics, 104, 55–60.CrossRefGoogle ScholarPubMed
Boppana, S. B., Rivera, L. B., Fowler, K. B., Mach, M., and Britt, W. J. (2001). Intrauterine transmission of cytomegalovirus to infants of women with preconceptional immunity. N. Engl. J. Med., 344, 1366–1371.CrossRefGoogle ScholarPubMed
Bowden, R. A., Sayers, M., Flournoy, N.et al. (1986). Cytomegalovirus immune globulin and seronegative blood products to prevent primary cytomegalovirus infection after marrow transplantation. N. Engl. J. Med., 314, 1006–1010.CrossRefGoogle Scholar
Brayman, K. L., Dafoe, D. C., Smythe, W. R.et al. (1988). Prophylaxis of serious cytomegalovirus infection in renal transplant candidates using live human cytomegalovirus vaccine. Arch. Surg., 123, 1502–1508.CrossRefGoogle ScholarPubMed
Britt, W. J. and Mach, M. (1996). Human cytomegalovirus glycoproteins. Intervirology, 39, 401–412.CrossRefGoogle ScholarPubMed
Britt, W. J., Vugler, L., and Stephens, E. B. (1988). Induction of complement-dependent and -independent neutralizing antibodies by recombinant-derived human cytomegalovirus gp55–116 (gB). J. Virol., 62, 3309–3318.Google Scholar
Britt, W. J., Vugler, L., Butfiloski, E. J., and Stephens, E. B. (1990). Cell surface expression of human cytomegalovirus (HCMV) gp55–116 (gB): Use of HCMV-recombinant vaccinia virus-infected cells in analysis of the human neutralizing antibody response. J. Virol., 64, 1079–1085.Google ScholarPubMed
Cha, T. A., Tom, E., and Kemble, G. W. (1996). Human cytomegalovirus clinical isolates carry at least 19 genes not found in laboratory strains. J. Virol., 70, 78–83.Google Scholar
Chee, M. S., Bankier, A. T., Beck, S.et al. (1990). Analysis of the protein-coding content of the sequence of human cytomegalovirus strain AD 169. Curr. Top. Microbiol. Immunol., 154, 125–169.Google Scholar
Chou, S. W. and Dennison, K. M. (1991). Analysis of interstrain variation in cytomegalovirus glycoprotein B sequences encoding neutralization-related epitopes. J. Infect. Dis., 163, 1229–1234.CrossRefGoogle ScholarPubMed
Clements-Mann, M. L., Weinhold, K., Matthews, T. J.et al. and NIAID AIDS Vaccine Evaluation Group (1998). Immune responses to human immuodeficiency virus (HIV) type 1 induced by canarypox expressing HIV-1MN gp 120, HIV-1SF2 recombinant gp120, or both vaccines in seronegative adults. J. Infect. Dis., 177, 1230–1240.CrossRefGoogle Scholar
Cohen, J. I. and Corey, G. R. (1985). Cytomegalovirus infection in the normal host. Medicine, 100–114.CrossRefGoogle ScholarPubMed
Compton, T., Nowlin, D. M., and Cooper, N. R. (1993). Initiation of human cytomegalovirus infection requires initial interaction with cell surface heparin sulfate. Virology, 193, 834–841.CrossRefGoogle Scholar
Craighead, J. E., Kanich, R. E., and lmeida, J. D. (1972). Nonviral microbodies with viral antigenicity produced in cytomegalovirus-infected cells. J. Virol., 10, 766–775.Google ScholarPubMed
Cremer, N. E., Cossen, C. K., Shell, G. R., and Pereira, L. (1985). Antibody response to cytomegalovirus polypeptides captured by monoclonal antibodies on the solid phase in enzyme immunoassays. J. Clin. Microbiol., 21, 517–521.Google ScholarPubMed
Cull, V. S., Broomfield, S., Bartlett, E. M., Brekalo, N. L., and James, C. M. (2002). Coimmunisation with type I IFN genes enhances protective immunity against cytomegalovirus and myocarditis in gB DNA-vaccinated mice. Gene Ther., 9, 1369–1378.CrossRefGoogle ScholarPubMed
Davison, A. J., Dolan, A., Akter, P.et al. (2003). The human cytomegalovirus genome revisited: comparison with the chimpanzee cytomegalovirus genome. J. Gen. Virol., 84, 17–28.CrossRefGoogle ScholarPubMed
Demmler, G. J. (1991). Infectious Diseases Society of America and Centers for Disease Control. Summary of a workshop on surveillance for congenital cytomegalovirus disease. Rev. Infect. Dis., 13, 329.CrossRefGoogle Scholar
Diamond, D. J., York, J., Sun, J. Y., Wright, C. L., and Forman, S. J. (1997). Development of a candidate HLA A∗ 0201 restricted peptide-based vaccine against human cytomegalovirus infection. Blood, 90, 1751–1767.Google ScholarPubMed
Elek, S. D. and Stern, H. (1974). Development of a vaccine against mental retardation cased by cytomegalovirus infection in utero. Lancet, 1, 1–15.CrossRefGoogle Scholar
Elkington, R., Walker, S., Crough, T.et al. (2003). Ex vivo profiling of CD8+ -T-cell responses to human cytomegalovirus reveals broad and multispecific reactivities in healthy virus carriers. J. Virol., 77, 5226–5240.CrossRefGoogle ScholarPubMed
Endresz, V., Kari, L., Berencsi, K.et al. (1999). Induction of human cytomegalovirus (HCMV)-glycoprotein B (gB)-specific neutralizing antibody and phosphoprotein 65 (pp65)-specific cytotoxic T lymphocyte responses by naked DNA immunization. Vaccine, 17, 50–58.CrossRefGoogle ScholarPubMed
Falagas, M. E., Snydman, D. R., Rathazer, R.et al. and The Boston Center for Liver Transplantation CMVIG Study Group (1997). Cytomegalovirus immune globulin (CMVIG) prophylaxis is associated wth increased survival after orthotopic liver transplantation. Clin. Transpl., 11, 432–437.Google Scholar
Fiala, M., Honess, R. W., Heiner, D. C.et al. (1976). Cytomegalovirus, proteins. I. Polypeptides of virions and dense bodies. J. Virol., 19, 243–254.Google ScholarPubMed
Fishman, J. A. and Rubin, R. H. (1998). Infection in organ-transplant recipients. N. Engl. J. Med., 338, 1741–1751.CrossRefGoogle ScholarPubMed
Fleisher, G. R., Starr, S. E., Friedman, H. M., and Plotkin, S. A. (1982). Vaccination of pediatric nurses with live attenuated cytomegalovirus. Am. J. Dis. Child., 136, 294–296.Google ScholarPubMed
Forghani, B. and Schmidt, N. J. (1980). Humoral immune response to virions and dense bodies of human cytomegalovirus determined by enzyme immunofluorescence assay. J. Med. Virol., 6, 119–127.Google ScholarPubMed
Fowler, K. B., Stagno, S., Pass, R. F., Britt, W. J., Boll, T. J., and Alford, C. A. (1992). The outcome of congenital cytomegalovirus infection in relation to maternal antibody status. N. Engl. J. Med., 326, 663–667.CrossRefGoogle ScholarPubMed
Fowler, K. B., Stagno, S., and Pass, R. F. (2003). Maternal immunity and prevention of congenital cytomegalovirus infection. J. Am. Med. Assoc., 289, 1008–1011.CrossRefGoogle ScholarPubMed
Frankenberg, N., Pepperl-Klindworth, S., Meyer, R. G., and Plachter, B. (2002). Identification of a conserved HLA-A-2 restricted decapeptide from the IE1 protein (pUL123) of human cytomegalovirus. Virology, 295, 208–216.CrossRefGoogle Scholar
Frey, S. E., Harrison, C., Pass, R. F.et al. (1999). Effects of antigen dose and immunization regimens on antibody responses to a cytomegalovirus glycoprotein B subunit vaccine. J. Infect. Dis., 180, 1700–1703.CrossRefGoogle ScholarPubMed
Gehrz, R. C., Christianson, W. R., Linner, K. M., Groth, K. E., and Balfour, H. H. Jr. (1980). Cytomegalovirus Vaccine: Specific humoral and cellular immune responses in human volunteers. Arch. Intern. Med., 140, 936–939.CrossRefGoogle ScholarPubMed
Gibson, W. and Irmiere, A. (1984). Selection of particles and proteins for use as human cytomegalovirus subunit vaccines. Birth Defects, 20, 305–324.Google ScholarPubMed
Glazer, J. P., Friedman, H. M., Grossman, R. A.et al. (1979). Live cytomegalovirus vaccination of renal transplant candidates. Ann. Intern. Med., 91, 676–683.CrossRefGoogle ScholarPubMed
Glowacki, L. S. and Smaill, F. M. (1994). Use of immune globulin to prevent symptomatic cytomegalovirus disease in transplant recipients: a meta-analysis. Transplant, 8, 10–18.Google ScholarPubMed
Gonczol, E. and Plotkin, S. (2001). Development of a cytomegalovirus vaccine: lessons from recent clinical trials. Expert. Opin. Biol. Ther., 1, 401–412.CrossRefGoogle ScholarPubMed
Gonczol, E., Lanacone, J., Furlini, G., Ho, W. Q., and Plotkin, S. A. (1989). Humoral immune response to cytomegalovirus Towne vaccine strain and to Toledo low-passage strain. J. Infect. Dis., 159, 851–859.CrossRefGoogle ScholarPubMed
Gonczol, E., Berencsi, K., Pincus, S.et al. Plotkin, S. A. (1995). Preclinical evaluation of an ALVAC (canarypox)-human cytomegalovirus glycoprotein B vaccine candidate. Vaccine, 13, 1080–1085.CrossRefGoogle ScholarPubMed
Gonzales Armas, J. C., Morello, C. S., Cranmer, L. D., and Spector, D. H. (1996). DNA immunization confers protection against murine cytomegalovirus infection. J. Virol., 70, 7921–7928.Google Scholar
Griffiths, P. D. (2002). Strategies to prevent CMV infection in the neonate. Semin. Neonatol., 7, 293–299.CrossRefGoogle ScholarPubMed
Griffiths, P. D., McLean, A., and Emery, V. C. (2001). Encouraging prospects for immunization against primary cytomegalovirus infection. Vaccine, 19, 1356–1362.CrossRefGoogle ScholarPubMed
Gyulai, Z., Endresz, V., Burian, K.et al. (2000). Cytotoxic T lymphocyte (CTL) responses to human cytomegalovirus pp65, IE1-exon4, gB, pp150, and pp28 in healthy individuals; reevaluation of prevalence of IE1-specific CTLs. J. Infect. Dis., 181, 1537–1546.CrossRefGoogle ScholarPubMed
Heineman, T. C., Schleiss, M., Bernstein, D., Fast, P., Spaete, R., and Kemble, G. (2003). Safety results from a phase 1 study of four live, recombinant HCMV Towne/Toledo chimeric vaccines. 9th International Cytomegalovirus Workshop and 1st International Betaherpesvirus Workshop, Maastricht, the Netherlands. (Abstract)
Holtappels, R., Podlech, J., Geginat, G., Steffens, H. P., Thomas, D., and Reddehase, M. J. (1998). Control of murine cytomegalovirus in the lungs; relative but not absolute immunodominance of the immediate-early 1 nonapeptide during the antiviral cytolytic T-lymphocyte response in pulmonary infiltrates. J. Virol., 72, 7201–7212.Google Scholar
Huang, E. S., Houng, S. M., Tegtmeier, G. E., and Alford, C. (1980). Cytomegalovirus: Genetic variation of viral genomes. Ann. N. Y. Acad. Sci., 354, 332–346.CrossRefGoogle ScholarPubMed
Hwang, E. S., Park, J. W., Kim, D. J., Park, C. G., and Cha, C. Y. (1999). Induction of neutralizing antibody against human cytomegalovirus (HCMV) with DNA-mediated immunization of HCMV glycoprotein B in mice. Micro. Immunol., 43, 307–310.CrossRefGoogle ScholarPubMed
Irmiere, A. and Gibson, W. (1983). Isolation and characterization of a non-infectious viron-like particle released from cells infected with human strains of cytomegalovirus. Virology, 130, 118–133.CrossRefGoogle Scholar
Istas, A. S., Demmler, G. J., Dobbins, J. G., and Stewart, J. A. (1995). Surveillance for congenital cytomegalovirus disease: a report from the National Congenital Cytomegalovirus Disease Registry. Clin. Infect. Dis., 20, 665–670.CrossRefGoogle ScholarPubMed
Jacobson, M. A., Sinclair, E., Bredt, B.et al. (2006). Safety and immunogenicity of Towne cytomegalovirus vaccine with or without adjuvant recombinant interleukin-12. Vaccine, 24, 5311–5319.CrossRefGoogle ScholarPubMed
Just, M., Buergin-Wolff, A., Emoedi, G., and Hernandez, R. (1975). Immunisation trials with live attenuated cytomegalovirus TOWNE 125. Infections, 3, 111–114.CrossRefGoogle ScholarPubMed
Kari, B. and Gehrz, R. (1990). Analysis of human antibody responses to human cytomegalovirus envelope glycoproteins found in two families of disulfide linked glycoprotein complexes designated gC-I and gC-II. Arch. Virol., 114, 213–228.CrossRefGoogle ScholarPubMed
Keay, S. and Baldwin, B. (1991). Anti-idiotype antibodies that mimic gp86 of human cytomegalovirus inhibit viral fusion but not attachment. J. Virol., 65, 5124–5128.Google Scholar
Kemble, G., Duke, G., and Winter, R. (1996). Defined large-scale alteration of the human cytomegalovirus genome constructed by cotransfection of overlapping cosmids. J. Virol., 70, 2044–2048.Google Scholar
Kern, F., Faulhaber, N., Frommel, C.et al. (2000). Analysis of CD8 T cell reactivity to cytomegalovirus using protein-spanning pools of overlapping pentadecapeptides. Eur. J. Immunol., 30, 1676–1682.3.0.CO;2-V>CrossRefGoogle ScholarPubMed
Kern, F., Bunde, T., Faulhaber, N.et al. (2002). Cytomegalovirus (CMV) phosphoprotein 65 makes a large contribution to shaping the T cell repertoire in CMV-exposed individuals. J. Infect. Dis., 185, 1709–1716.CrossRefGoogle Scholar
Kimberlin, D. W., Lin, C. Y., Sanchez, P. J.et al. and the National Institute of Allergy and Infectious Diseases Collaborative Antiviral Study Group (2003). Effect of ganciclovir therapy on hearing in symptomatic congenital cytomegalovirus disease involving the central nervous system: a randomized, controlled trial. J. Pediatr., 143, 16–25.CrossRefGoogle ScholarPubMed
Klinman, D. M. (2003). CpG DNA as a vaccine adjuvant. Expert Rev. Vaccines, 2, 305–315.CrossRefGoogle ScholarPubMed
Klinman, D. M., Ishii, K. J., and Verthelyi, D. (2000). CpG DNA augments the immunogenicity of plasmid DNA vaccines. Curr. Top Microbiol. Immunol., 247, 131–142.Google ScholarPubMed
Kniess, N., Mach, M., Fay, J., and Britt, W. J. (1991). Distribution of linear antigenic sites on glycoprotein gp55 of human cytomegaloviurs. J. Virol., 65, 138–146.Google Scholar
Koff, R. S. (2001). Hepatitis vaccine. Infect. Dis. Clin. North Am., 15, 83–95.CrossRefGoogle Scholar
La Rosa, C., Wang, Z., Brewer, J. C.et al. (2002). Preclinical development of an adjuvant-free peptide vaccine with activity against CMV pp65 in HLA transgenic mice. Blood, 100, 3681–3689.CrossRefGoogle ScholarPubMed
Rosa, C., Wang, Z., Lacey, S. F.et al. (2005). Characterization of host immunity to cytomegalovirus pp150 (UL32). Hum. Immunol., 66, 116–126.CrossRefGoogle Scholar
Leather, H. L. and Wingard, J. R. (2001). Infections following hematopoietic stem cell transplantation. In Davis, C., ed. Infectious Disease Clinics of North America. Infections in the Compromised Host. Philadelphia: W. B. Saunders Company, pp. 483–520.Google Scholar
Li, C. R., Greenberg, P. D., Gilbert, M. J., Goodrich, J. M. and Riddell, S. R. (1994). Recovery of HLA-restricted cytomegalovirus (CMV)-specific T-cell responses after allogeneic bone marrow transplant: correlation with CMV disease and effect of ganciclovir prophylaxis. Blood, 83, 1971–1979.Google ScholarPubMed
Longmate, J., York, J., LaRosa, C.et al. (2001). Population coverage by HLA class-I restricted cytotoxic T-lymphocyte epitopes. Immunogenetics, 52, 165–173.CrossRefGoogle ScholarPubMed
Mach, M., Kropff, B., Monte, P., and Britt, W. (2000). Complex formation by human cytomegalovirus glycoproteins M (gpUL100) and N (gpUL73). J. Virol., 74, 11881–11892.CrossRefGoogle Scholar
Marker, S. C., Simmons, R. L., and Balfour, H. H. Jr. (1981). Cytomegalovirus vaccine in renal allograft recipients. Transpl. Proc., 13, 117–119.Google ScholarPubMed
Marshall, G. S., and Plotkin, S. A. (1993). Cytomegalovirus Vaccines. In Roizman, B., Whitley, R. J., and Lopez, C., (eds.) The Human Herpesviruses., New York: Raven Press, Ltd., pp. 381.Google Scholar
Marshall, G. S., Rabalais, G. P., Stout, G. G., and Waldeyer, S. L. (1992). Antibodies to recombinant-derived glycoprotein B after natural human cytomegalovirus infection correlate with neutralizing activity. J. Infect. Dis., 165, 381–384.CrossRefGoogle ScholarPubMed
Marshall, G. S., Stout, G. G., Knights, M. E.et al. (1994). Ontogeny of glycoprotein gB-specific antibody and neutralizing activity during natural cytomegalovirus infection. J. Med. Virol., 77–83.CrossRefGoogle ScholarPubMed
Marshall, G. S., Li, M., Stout, G. G.et al. (2000). Antibodies to the major linear neutralizing domains of cytomegalovirus glycoprotein B among natural seropositives and CMV subunit vaccine recipients. Viral Immunol., 13, 329–341.CrossRefGoogle ScholarPubMed
Martinon, F., Gras-Masse, H., Boutillon, C.et al. (1992). Immunization of mice with lipopeptides bypasses the prerequisite for adjuvant immune response of BALB/c mice to human immunodeficiency virus envelope glycoprotein. J. Immunol., 149, 3416–3422.Google ScholarPubMed
Masuoka, M., Yoshimuta, T., Hamada, M.et al. (2001). Identification of the HLA-A24 peptide within cytomegalovirus protein pp65 recognized by CMV-specific cytotoxic T lymphocytes. Viral Immunol., 14, 369–377.CrossRefGoogle ScholarPubMed
McElrath, M. J. (1995). Selection of potent immunological adjuvants for vaccine construction. Semin. Cancer Biol., 6, 375–385.CrossRefGoogle ScholarPubMed
McLaughlin-Taylor, E., Pande, H., Forman, S. J.et al. (1994). Identification of the major late human cytomegalovirus matrix protein pp65 as a target for CD8+ virus-specific cytotoxic T lymphocytes. J. Med. Virol., 43, 103–110.CrossRefGoogle Scholar
Messori, A., Rampazzo, R., Scroccaro, G., and Martini, N. (1994). Efficacy of hyperimmune anti-cytomegalovirus immunoglobulins for the prevention of cytomegalovirus infection in recipients of allogeneic bone marrow transplantation: a meta-analysis. Bone Marrow Transpl., 13, 163–167.Google ScholarPubMed
Meyer, H., Sundqvist, V. A., Pereia, L., and Mach, M. (1992). Glycoprotein gp116 of human cytomegalovirus contains epitopes for strain-common and strain-specific antibodies. J. Gen. Virol., 73, 2375–2383.CrossRefGoogle ScholarPubMed
Michaels, M. G., Greenberg, D. P., Sabo, D. L., and Wald, E. R. (2003). Treatment of children with congenital cytomegalovirus infection with ganciclovir. Pediatr. Infect. Dis. J., 22, 504–509.CrossRefGoogle ScholarPubMed
Mitchell, D. K., Holmes, S. J., Burke, R. L., Duliege, A. M., and Adler, S. P. (2002). Immunogenicity of a recombinant human cytomegalovirus gB vaccine in seronegative toddlers. Pediatr. Infect. Dis. J., 21, 133–138.CrossRefGoogle ScholarPubMed
Mocarski, E. S. and Courcelle, C. T. (2001). Cytomegaloviruses and their replication. In Knipe, M. D. and Howley, P. M. (eds.) Fields Virology, 4th, edn. pp. 2629–2673. Philadelphia: Lippincott Williams & WilkinsGoogle Scholar
Morello, C. S., Ye, M., and Spector, D. H. (2000). Suppression of murine cytomegalovirus (MCMV) replication with DNA vaccine encoding MCMC M84 (A homolog of human cytomegalovirus pp65). J. Virol., 74, 3696–3708.CrossRefGoogle Scholar
Morris, D. J., Sims, D., Chiswick, M., Das, V. K., and Newton, V. E. (1994). Symptomatic congenital cytomegalovirus infection after maternal recurrent infection. Pediatr. Infect. Dis. J., 13, 61–64.CrossRefGoogle ScholarPubMed
Navarro, D., Paz, P., Tugizov, S., Topp, K., La Vail, J., and Pereira, L. (1993). Glycoprotein B of human cytomegalovirus promotes virion penetration into cells, transmission of infection from cell to cell, and fusion of infected cells. Virology, 197, 143–158.CrossRefGoogle ScholarPubMed
Neff, B. J., Weibel, R. E., Buynak, E. B., McAllen, A. A., and Hillman, M. R. (1979). Clinical and laboratory studies of live cytomegalovirus vaccine Ad-169. Proc. Soc. Exp. Biol. Med., 160, 32–37.CrossRefGoogle ScholarPubMed
Nigro, G., Adler, S. P., La Torre, R., and Best, A. M. (2005). Passive immunization during pregnancy for congenital cytomegalovirus infection. N. Engl. J. Med., 353, 1350–1362.CrossRefGoogle ScholarPubMed
Ott, G., Barchfeld, G. L., and Nest, G. (1995). Enhancement of humoral response against human influenza vaccine with the simple submicron oil/water emulsion adjuvant MF59. Vaccine, 13, 1557–1562.CrossRefGoogle ScholarPubMed
Pande, H., Campo, K., and Tanamachi, B. (1995). Direct DNA immunization of mice with plasmid DNA encoding the tegument protein pp65 (ppUL83) of human cytomegalovirus induces high levels of circulating antibody to the encoded protein. Scand. J. Infect. Dis.[Suppl.], 99, 117–120.Google ScholarPubMed
Pass, R. F. (2001). Cytomegalovirus. In Knipe, D. M. and Howley, P. M. (eds.) Fields Virology, 4th, edn. pp. 2675–2705. Philadelphia, PA: Lippincott Williams & Wilkins, pp. 2675–2705.
Pass, R. F. and Burke, R. L. (2002). Development of cytomegalovirus vaccines: prospects for prevention of congenital CMV infection. Semin. Pediatric. Infect. Dis., 13, 196–204.CrossRefGoogle ScholarPubMed
Pass, R. F., Hutto, C., Ricks, R., and Cloud, G. A. (1986). Increased rate of cytomegalovirus infection among parents of children attending day-care centers. N. Engl. J. Med., 314, 1414–1418.CrossRefGoogle ScholarPubMed
Pass, R. F., Duliege, A. M., Sekulovich, R., Percell, S., Britt, W., and Burke, R. L. (1999). A subunit cytomegalovirus vaccine based on recombinant envelope glycoprotein B and a new adjuvant. J. Infect. Dis., 180, 970–975.CrossRefGoogle Scholar
Patel, R. and Paya, C. V. (1997). Infections in solid-organ transplant recipients. Clin. Microbiol. Rev., 10, 86–124.Google ScholarPubMed
Pepperl-Klindworth, S., Frenkenberg, N., and Plachter, B. (2002). Development of novel vaccine strategies against human cytomegalovirus infection based on subviral particles. J. Clin. Virol., 25, S75–S85.CrossRefGoogle ScholarPubMed
Pepperl, S., Munster, J., Mach, M., Harris, J. R., and Plachter, B. (2000). Dense bodies of human cytomegalovirus induce both humoral and cellular immune responses in the absence of viral gene expression. J. Virol., 74, 6132–6146.CrossRefGoogle ScholarPubMed
Pialoux, G., Excler, J. L., Riviere, Y.et al. The AGIS Group, and and L'Agence Nationale De Recherche Sur Le Sida (1995). A prime-boost approach to HIV preventive vaccine using a recombinant canarypox virus expressing glycoprotein 160 (MN) followed by a recombinant glycoprotein 160 (MN/LAI). AIDS, Res. Hum. Retroviruses., 11, 381.
Plotkin, S. A. (1999). Vaccination against cytomegalovirus, the changeling demon. Pediatr. Infect. Dis. J., 18, 313–316.CrossRefGoogle ScholarPubMed
Plotkin, S. A. (2001). Vaccination against cytomegalovirus. Arch. Virol. Supplementum, 121–134.Google ScholarPubMed
Plotkin, S. A. (2002). Is there a formula for an effective CMV vaccine?J. Clin. Virol., 25, S13–S21.CrossRefGoogle Scholar
Plotkin, S. A., Furukawa, T., Zygraich, N., and Huygelen, C. (1975). Candidate cytomegalovirus strain for human vaccination. Infect. Immun., 12, 521–527.Google ScholarPubMed
Plotkin, S. A., Farquhar, J. and Horberger, E. (1976). Clinical trials of immunization with the Towne 125 strain of human cytomegalovirus. J. Infect. Dis., 134, 470–475.CrossRefGoogle ScholarPubMed
Plotkin, S. A., Smiley, M. L., Friedman, H. M.et al. (1984). Towne-vaccine-induced prevention of cytomegalovirus disease after renal transplants. Lancet, 1, 528–530.CrossRefGoogle ScholarPubMed
Plotkin, S. A., Starr, S. E., Friedman, H. M., Gonczol, E., and Weibel, R. E. (1989). Protective effects of Towne cytomegalovirus vaccine against low-passage cytomegalovirus administered as a challenge. J. Infect. Dis., 159, 860–865.CrossRefGoogle ScholarPubMed
Plotkin, S. A., Starr, S. E., Friedman, H. M.et al. (1991). Effect of Towne live virus vaccine on cytomegalovirus disease after renal transplant. A controlled trial. Ann. Intern. Med., 114, 525–531.CrossRefGoogle ScholarPubMed
Plotkin, S. A., Higgins, R., and Kurtz, J. B. (1994). Multicenter trial of Towne strain attenuated virus vaccine in seronegative renal transplant recipients. Transplantation, 58, 1176–1178.Google ScholarPubMed
Plotkin, S. A., Cadoz, M., Meignier, B.et al. (1995). The safety and use of canarypox vectored vaccine. Dev. Biol. Stand., 84, 165–170.Google Scholar
Prichard, M. N., Penfold, M. E., Duke, G. M., Spaete, R. R., and Kemble, G. W. (2001). A review of genetic differences between limited and extensively passaged human cytomegalovirus strains. Rev. Med. Virol., 11, 191–200.CrossRefGoogle ScholarPubMed
Quinnan, G. V., Kirmani, N., Rook, A. H.et al. (1982). Cytotoxic T cells in cytomegalovirus infection. HLA-restricted T-lymphocyte and non T-lymphocyte cytotoxic responses correlate with recovery from cytomegalovirus infection in bone marrow transplant recipients. N. Engl. J. Med., 307, 6–19.CrossRefGoogle ScholarPubMed
Quinnan, G. V., Delery, M. R. A., Frederick, W. R.et al. (1984). Comparative virulence and immunogenicity of the Towne strain and a nonattenuated strain of cytomegalovirus. Ann. Intern. Med., 101, 478–483.CrossRefGoogle Scholar
Rasmussen, L., Matkin, C., Spaete, R., Pachl, C., and Merigan, T. C. (1991). Antibody response to human cytomegalovirus glycoproteins gB and gH after natural infection in humans. J. Infect. Dis., 164, 835–842.CrossRefGoogle ScholarPubMed
Rasmussen, L., Morris, S., Wolitz, R.et al. (1994). Deficiency in antibody response to human cytomegalovirus glycoprotein gH in human immunodeficiency virus-infected patients at risk for cytomegalovirus retinitis. J. Infect. Dis., 170, 673–677.CrossRefGoogle ScholarPubMed
Rasmussen, L. E., Nelson, R. M., Kelsall, D. C., and Merigan, T. C. (1984). Murine monoclonal antibody to a single protein neutralizes the infectivity of human cytomegalovirus. Proc. Natl Acad. Sci. USA, 81, 876–880.CrossRefGoogle ScholarPubMed
Raz, E., Carson, D. A., Parker, S. E.et al. (1994). Intradermal gene immunization: the possible role of DNA uptake in the induction of cellular immunity to viruses. Proc. Natl Acad. Sci. USA, 91, 9519–9523.CrossRefGoogle ScholarPubMed
Reddehase, M. J. and Koszinowski, U. H. (1984). Significance of herpesvirus immediate early gene expression in cellular immunity to cytomegalovirus infection. Nature, 312, 367–371.CrossRefGoogle ScholarPubMed
Reusser, P., Riddell, S. R., Meyers, J. D., and Greenberg, P. D. (1991). Cytotoxic T lymphocyte response to cytomegalovirus following allogeneic bone marrow transplantation: pattern of recovery and correlation with cytomegalovirus and disease. Blood, 78, 1373–1380.Google Scholar
Revello, M. G. and Gerna, G. (2002). Diagnosis and management of human cytomegalovirus infection in the mother, fetus and newborn infant. Clin. Microbiol. Rev., 15, 680–715.CrossRefGoogle Scholar
Roby, C. and Gibson, W. (1986). Characterization of phosphoproteins and protein kinase activity of virions, noninfectious enveloped particles, and dense bodies of human cytomegalovirus. J. Virol., 59, 714–727.Google ScholarPubMed
Ross, S. A., Fowler, K. B., Ashrith, G.et al. (2006). Hearing loss in children with congenital cytomegalovirus infection born to mothers with preexisting immunity. J. Pediatr., 148, 332–336.CrossRefGoogle ScholarPubMed
Sarov, I., and Abady, I. (1975). The morphogenesis of human cytomegalovirus; isolation and polypeptide characterization of cytomegalovirions and dense bodies. Virology, 66, 464–473.CrossRefGoogle ScholarPubMed
Schleiss, M. R., Bourne, N., Jensen, N. J., Bravo, F., and Bernstein, D. I. (2000). Immunogenicity evaluation of DNA vaccine that target guinea pig cytomegalovirus proteins glycoprotein B and UL83. Viral Immunol., 13, 155–167.CrossRefGoogle ScholarPubMed
Schleiss, M. R., Stroup, G., Pogorzelski, K., and McGregor, A. (2006). Protection against congenital cytomegalovirus (CMV) disease, conferred by a replication-disabled, bacterial artificial chromosome (BAC)-based DNA vaccine. Vaccine, 24, 6175–6186.CrossRefGoogle ScholarPubMed
Schmolke, S., Drescher, P., Jahn, G., and Plachter, B. (1995). Nuclear targeting of the tegument protein pp65 (UL83) of human cytomegalovirus: an unusual bipartite nuclear localization signal functions with other portions of the protein to mediate its efficient nuclear transport. J. Virol., 69, 1071–1078.Google ScholarPubMed
Schopfer, K., Lauber, E., and Krech, U. (1978). Congenital cytomegalovirus infection in newborn infants of mothers infected before pregnancy. Arch. Dis. Child., 53, 536–539.CrossRefGoogle ScholarPubMed
Schoppel, K., Hassfurhter, E., Britt, W. J., Ohlin, M., Borrebaeck, C. A., and Mach, M. (1996). Antibodies specific for the antigenic domain 1 (AD-1) of glycoprotein B (gpUL55) of human cytomegalovirus bind to different substructures. Virology, 216, 133–145.CrossRefGoogle ScholarPubMed
Sia, I. G. and Patel, R. (2000). New strategies for prevention and therapy of cytomegalovirus infection and disease in solid-organ transplant recipients. Clin. Microbiol. Rev., 13, 83–121.CrossRefGoogle ScholarPubMed
Simon, D. M., M. P. and Levin, S. M., (2003). Infectious Complications of solid organ transplantations. In Burke, A.Cunha, M. D. and Guest Editor, eds. Infectious Disease Clinics of North America: Infections in the Compromised Host, Philadelphia, PA: W. B. Saunders Company, pp. 521–549.
Simpson, J. A., Chow, J. C., Baker, J.et al. (1993). Neutralizing monoclonal antibodies that distinguish three antigenic sites on human cytomegalovirus glycoprotein H have conformationally distinct binding sites. J. Virol., 67, 489–496.Google ScholarPubMed
Snydman, D. R. (1993). Review of the efficacy of cytomegalovirus immune globulin in the prophylaxis of CMV disease in renal transplant recipients. Transpl. Proc., 25, 25–26.Google ScholarPubMed
Snydman, D. R., Werner, B. G., Meissner, H. C.et al. (1995). Use of cytomegalovirus immunoglobulin in multiple transfused premature neonates. Pediatr. Infect. Dis., 14, 34–40.CrossRefGoogle Scholar
Spaete, R. R. (1994). A recombinant subunit vaccine approach to HCMV vaccine development. Transplant Proc., 23, 90–96.Google Scholar
Stagno, S., Reynolds, D. W., Huang, E. S., Thames, S. D., Smith, R. J., and Alford, C. A. (1977). Congenital cytomegalovirus infection. N. Engl. J. Med., 296, 1254–1258.CrossRefGoogle ScholarPubMed
Stagno, S., Pass, R. F., Dworsky, M. E.et al. (1982). Congenital cytomegalovirus infection. The relative importance of primary and recurrent maternal infection. N. Engl. J. Med., 306, 945–949.CrossRefGoogle ScholarPubMed
Stagno, S., Pass, R. F., Cloud, G.et al. (1986). Primary cytomegalovirus infection in pregnancy. Incidence, transmission to fetus, and clinical outcome. J. Am. Med. Assoc., 256, 1904–1908.CrossRefGoogle ScholarPubMed
Stagno, S., Reynolds, D. W., and Huang, E. S. (1997). Congenital cytomegalovirus infection. N. Engl. J. Med., 296, 1254–1258.CrossRefGoogle Scholar
Stanberry, L. A., Spruance, S. L., Cunningham, A. L. and For the GlaxoSmithKline Herpes Vaccine Efficacy Study Group. (2002). Glycoprotein-D-adjuvant vaccine to prevent genital herpes. N. Engl. J. Med., 347, 1652–1660.CrossRefGoogle ScholarPubMed
Starr, S. E., Glazer, J. P., Friedman, H. M., Farquhar, J. D. and Plotkin, S. A. (1981). Specific cellular and humoral immunity after immunization with live Towne strain cytomegalovirus vaccine. J. Infect. Dis., 143, 585–589.CrossRefGoogle ScholarPubMed
Stern, H. (1984). Live cytomegalovirus vaccination of healthy volunteers: Eight-year follow-studies. Birth Defects: Original Article Series, 20, 263–269.Google Scholar
Stinski, M. F. (1976). Humans cytomegalovirus: glycoproteins associated with virions and dense bodies. J. Virol., 19, 594–609.Google ScholarPubMed
Stratton, K. R., Durch, J., and Lawrence, R. S., eds. (2000). Vaccines for the 21st century: A Tool for Decision making. Washington, D. C.: National Academy Press.Google Scholar
Tang, D. C., DeVitt, M., and Johnston, S. A. (1992). Genetic immunization is a simple method for eliciting an immune response. Nature, 356, 152–154.CrossRefGoogle ScholarPubMed
Tartaglia, J., Perkus, M. E., Taylor, J.et al. (1992). NYVAC: a highly attenuated strain of vaccinia virus. Virology, 188, 217–232.CrossRefGoogle ScholarPubMed
Taylor, J., Meignier, B., Tartaglia, J., Languest, B., VanderHoeven, J., and Franchini, G. (1995). Biological and immunogenic properties of a canarypox-rabies recombinant, ALVAC-RG (vCP65) in non-avian species. Vaccine, 13, 539–549.CrossRefGoogle Scholar
Temperton, N. J. (2002). DNA vaccines against cytomegalovirus: current progress. Int. J. Antimicrob. Agents, 19, 169–172.CrossRefGoogle ScholarPubMed
Temperton, N. J., Quenelle, D. C., Lawson, K. M.et al. (2003). Enhancement of humoral immune responses to a human cytomegalovirus DNA vaccine: Adjuvant effects of aluminum phosphate and CpG oligodeoxynucleotides. J. Med. Virol., 70, 86–90.CrossRefGoogle ScholarPubMed
Topilko, A., and Michelson, S. (1994). Hyperimmediate entry of human cytomegalovirus virions and dense bodies into human fibroblasts. Res. Virol., 145, 75–82.CrossRefGoogle ScholarPubMed
Tsuji, T., Hamajima, K.Fukushima, J.et al. (1997). Enhancement of cell-mediated immunity against HIV-1 induced by coinoculation of plasmid-encoded HIV-1 antigen with plasmid expressing IL-12. J. Immunol., 158, 4008–4013.Google Scholar
Ulmer, J. B., Donnelly, J. J., Parker, S. E.et al. (1993). Heterologous protection against influenza by infection of DNA encoding a viral protein. Science, 259, 1745–1749.CrossRefGoogle ScholarPubMed
Ulmer, J. B., DeWitt, C. M., Chastain, M.et al. (1999). Enhancement of DNA vaccine potency using conventional aluminum adjuvants. Vaccine, 18, 18–28.CrossRefGoogle ScholarPubMed
Urban, M., Klein, M., Britt, W. J., Hassfurther, E., and Mach, M. (1996). Glycoprotein H of human cytomegalovirus is a major antigen for the neutralizing humoral immune response. J. Gen. Virol., 77, 1537–1547.CrossRefGoogle ScholarPubMed
Valantine, H. A. (1995). Prevention and treatment of cytomegalovirus disease in thoracic organ transplant patients: evidence for a beneficial effect of hyperimmune globulin. Transpl. Proc., 27 (Suppl 1), 49–57.Google ScholarPubMed
Wada, K., Mizuno, S., Ohta, H. and Nishiyama, Y. (1997). Immune response to neutralizing epitope on human cytomegalovirus glycoprotein B in Japanese: correlation of serologic respone with HLA-type. Microbiol. Immunol., 41, 841–845.CrossRefGoogle Scholar
Wagner, B., Kroff, B., Kalbacher, H.et al. (1992). A continuous sequence of more than 70 amino acids is essential for antibody binding to the dominant antigenic site of glycoprotein gp58 of human cytomegalovirus. J. Virol., 66, 5290–5297.Google ScholarPubMed
Walter, E. A., Greenberg, P. D., Gilbert, M. J.et al. (1995). Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N. Engl. J. Med., 16, 1038–1044.CrossRefGoogle Scholar
Wang, J. B., Adler, S. P., Hempfling, S., Burke, R. L., Duliege, A. M., and Plotkin, S. A. (1996). Mucosal antibodies to human cytomegalovirus glycoprotein B occur following both natural infection and immunization with human cytomegalovirus vaccines. J. Infect. Dis., 174, 387–392.CrossRefGoogle ScholarPubMed
Wang, X., Huong, S. M., Chiu, M. L., Raab-Traub, N., and Huang, E. S. (2003). Epidermal growth factor receptor is a cellular receptor for human cytomegalovirus. Nature, 424, 456–461.CrossRefGoogle ScholarPubMed
Wills, M. R., Carmichael, A. J., Mynard, K.et al. (1996). The human cytotoxic T-lymphocyte (CTL) response to cytomegalovirus is dominated by structural protein pp65: frequency, specificity, and T-cell receptor usage of pp65-specific CTL. J. Virol., 70, 7569–7579.Google ScholarPubMed
Wolff, J. A., Malone, R. W., Williams, P.et al. (1990). Direct gene transfer into mouse muscle in vivo., Science, 247, 1465–1468.CrossRefGoogle ScholarPubMed
Xiang, Z. and Ertl, H. C. (1995). Manipulation of the immune response to a plasmid-encoded viral antigen by coinoculaton with plasmids expressing cytokines. Immunity, 2, 129–135.CrossRefGoogle ScholarPubMed
Ye, M., Morello, C. S. and Spector, D. H. (2002). Strong CD8 T-cell responses following coimmunization with plasmids expressing the dominant pp89 and subdominant M84 antigens of murine cytomegalovirus correlate with long-term protection against subsequent viral challenge. J. Virol., 76, 2100–2112.CrossRefGoogle ScholarPubMed
Yeager, A. S., Grumet, F. C., Hafleigh, E. B., Arvin, A. M., Bradley, J. S., and Prober, C. G., (1981). Prevention of transfusion-acquired cytomegalovirus infections in newborn infants. J. Pediatr., 98, 281–287.CrossRefGoogle ScholarPubMed
Yeow, W. S., Lawson, C. M., and Beilharz, M. W. (1998). Antiviral activities of individual murine IFN-α subtypes in vivo. Intramuscular injection of IFN expression constructs reduces cytomegalovirus replication. J. Immunol., 160, 2932–2939.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×