Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-qs9v7 Total loading time: 0 Render date: 2024-07-11T21:26:05.404Z Has data issue: false hasContentIssue false

72 - Epstein–Barr virus vaccines

from Part VII - Vaccines and immunothgerapy

Published online by Cambridge University Press:  24 December 2009

Andrew J. Morgan
Affiliation:
Division of Virology, Department of Cellular and Molecular Medicine, School of Medical Sciences, University of Bristol, UK
Rajiv Khanna
Affiliation:
Tumour Immunology Laboratory, Division of Infectious Diseases and Immunology, Queensland Institute for Medical Research, Herston, Australia
Ann Arvin
Affiliation:
Stanford University, California
Gabriella Campadelli-Fiume
Affiliation:
Università degli Studi, Bologna, Italy
Edward Mocarski
Affiliation:
Emory University, Atlanta
Patrick S. Moore
Affiliation:
University of Pittsburgh
Bernard Roizman
Affiliation:
University of Chicago
Richard Whitley
Affiliation:
University of Alabama, Birmingham
Koichi Yamanishi
Affiliation:
University of Osaka, Japan
Get access

Summary

Introduction

Primates and their γ-herpesviruses enjoy a largely peaceful coexistence where a balance of power has been reached over evolutionary time. Coevolution probably began before primate speciation and has allowed these viruses to develop sophisticated systems for the evasion of host immune responses. As a consequence, herpesvirus vaccines have been especially difficult to design because of viral latency, persistence, and immune modulation. Epstein–Barr virus (EBV) persists for the life of the individual in the face of a range of antibody responses, some of which are virus-neutralizing in vitro and a multitude of cell-mediated responses, including viral-specific CD8+ T-cells, CD4+ T-cells and NK cells. At least 95% of the adult population is infected with EBV and, for the vast majority, there are no clinical consequences whatsoever and an asymptomatic carrier state is maintained. It is not clear whether advantages are conferred to humans by lifelong EBV infection, but it is possible that some immunological effects, such as bias of the T-cell receptor repertoire are provided on a population-wide basis. Whether unselective mass vaccination of healthy individuals to prevent or modify EBV infection may cause more problems than it would solve must be considered.

M. A. Epstein first put forward ideas on the development of EBV vaccines in 1976. These original proposals were based on the notion that vaccination might prevent EBV infection and break the link in the complex chains of events that lead to EBV-associated disease.

Type
Chapter
Information
Human Herpesviruses
Biology, Therapy, and Immunoprophylaxis
, pp. 1292 - 1305
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ablashi, D., Bornkamm, G. W., Boshoff, C.et al. (1997). Epstein–Barr virus and Kaposi's sarcoma herpesvirus/human herpesvirus. In IARC Monographs on the evaluation of carcinogenic risks to humans, Lyon: IARC, pp. 497.Google Scholar
Adhikary, D., Behrends, V., Mossman, A., Wilter, K., Bornkamm, G. W., and Mautner, J. (2006). Control of Epstein– Barr virus infection in vitro by T helper cells specific for virion glycoproteins. J. Exp. Med., 203, 805–808.CrossRefGoogle Scholar
Aviel, S., Winberg, G., Massucci, M., and Ciechanover, A. (2000). Degradation of the Epstein–Barr virus latent membrane protein 1 (LMP1) by the ubiquitin-proteasome pathway. Targeting via ubiquitination of the N-terminal residue. J. Biol. Chem., 275, 23491–23499.CrossRefGoogle ScholarPubMed
Bale, J. F. Jr., Petheram, S. J., Souza, I. E., and Murph, J. R. (1996). Cytomegalovirus reinfection in young children. J. Pediatr., 128, 347–352.CrossRefGoogle ScholarPubMed
Blackman, M. A., Flano, E., Usherwood, E., and Woodland, D. L. (2000). Murine gamma-herpesvirus-68: a mouse model for infectious mononucleosis?Mol. Med. Today, 6, 488–490.CrossRefGoogle ScholarPubMed
Blake, N., Haigh, T., Shaka'a, G., Croom-Carter, D., and Rickinson, A. (2000). The importance of exogenous antigen in priming the human CD8+ T cell response: lessons from the EBV nuclear antigen EBNA1. J. Immunol., 165, 7078–7087.CrossRefGoogle ScholarPubMed
Bollard, C. M., Aguilar, L., Straathof, K. C.et al. (2004). Cytotoxic T lymphocyte therapy for Epstein–Barr virus+ Hodgkin's disease. J. Exp. Med., 200(12), 1623–1633.CrossRefGoogle ScholarPubMed
Borza, C. M. and Hutt-Fletcher, L. M. (2002). Alternate replication in B cells and epithelial cells switches tropism of Epstein–Barr virus. Nat. Med. 8, 594–599.CrossRefGoogle Scholar
Cadavid, L. F., Mejia, B. E., and Watkins, D. I. (1999). MHC class I genes in a New World primate, the cotton-top tamarin (Saguinus oedipus), have evolved by an active process of loci turnover. Immunogenetics, 49, 196–205.CrossRefGoogle Scholar
Chen, G., Shankar, P., Lange, C.et al. (2001). CD8 T cells specific for human immunodeficiency virus, Epstein–Barr virus, and cytomegalovirus lack molecules for homing to lymphoid sites of infection. Blood, 98, 156–164.CrossRefGoogle ScholarPubMed
Dawson, C. W., Tramountanis, G., Eliopoulos, A. G., and Young, L. S. (2003). Epstein–Barr virus latent membrane protein 1 (LMP1) activates the phosphatidylinositol 3-kinase/Akt pathway to promote cell survival and induce actin filament remodeling. J. Biol. Chem., 278, 3694–3704.CrossRefGoogle ScholarPubMed
de Haan, L., and Hirst, T. R. (2002). Bacterial toxins as versatile delivery vehicles. Curr. Opin. Drug Discov. Devel., 5, 269–278.Google ScholarPubMed
de Haan, L., Hearn, A. R., Rivett, A. J., and Hirst, T. R. (2002). Enhanced delivery of exogenous peptides into the class I antigen processing and presentation pathway. Infect. Immun., 70, 3249–3258.CrossRefGoogle Scholar
de Thoisy, B., Pouliquen, J. F., Lacoste, V., Gessain, A., and Kazanji, M. (2003). Novel gamma-1 herpesviruses identified in free-ranging new world monkeys (golden-handed tamarin (Saguinus midas), squirrel monkey (Saimiri sciureus), and white-faced saki (Pithecia pithecia), in French Guiana. J. Virol., 77, 9099–9105.CrossRefGoogle Scholar
Denis, M. J., (2005). The invention relates to the use of an EBV membrane antigen or derivative thereof in combination with a suitable adjuvant in the manufacture of a vaccine for the prevention of infectious mononucleosis (IM), and to vaccine compositions suitable for prevention of IM. United States Patent Application # 20050053623. http://www.uspto.gov/patft/index.html
Dukers, D. F., Meij, P., Vervoort, M. B.et al. (2000). Direct immunosuppressive effects of EBV-encoded latent membrane protein 1. J. Immunol., 165, 663–670.CrossRefGoogle ScholarPubMed
Duraiswamy, J., Burrows, J. M., Bharadwaj, M.et al. (2003a). Ex vivo analysis of T-cell responses to Epstein–Barr virus-encoded oncogene latent membrane protein 1 reveals highly conserved epitope sequences in virus isolates from diverse geographic regions. J. Virol., 77, 7401–7410.CrossRefGoogle Scholar
Duraiswamy, J., Sherritt, M., Thomson, S.et al. (2003b). Therapeutic LMP1 polyepitope vaccine for EBV-associated Hodgkin disease and nasopharyngeal carcinoma. Blood, 101, 3150–3156.CrossRefGoogle Scholar
Duraiswamy, J., Bharadwaj, M., Tellam, J.et al. (2004). Induction of therapeutic T-cell responses to subdominant tumor-associated viral oncogene after immunization with replication-incompetent polyepitope adenovirus vaccine. Cancer Res., 64(4), 1483–1489.CrossRefGoogle ScholarPubMed
Gan, Y. J., Chodosh, J., Morgan, A., and Sixbey, J. W. (1997). Epithelial cell polarization is a determinant in the infectious outcome of immunoglobulin A-mediated entry by Epstein–Barr virus. J. Virol., 71, 519–526.Google ScholarPubMed
Gandhi, M. K., Lambley, E., Duraiswamy, J. et al. (2006). Expression of LAG-3 by tumor-infiltrating lymphocytes is co-incident with the suppression of latent membrane antigen-specific CD8+ T-cell function in Hodgkin lymphoma patients. Blood, [Epub ahead of print].
Gottschalk, S., Heslop, H. E., and Roon, C. M. (2002). Treatment of Epstein–Barr virus-associated malignancies with specific T cells. Adv. Cancer Res., 84, 175–201.CrossRefGoogle ScholarPubMed
Gu, S. Y., Huang, T. M., Ruan, L.et al. (1995). First EBV vaccine trial in humans using recombinant vaccinia virus expressing the major membrane antigen. Dev. Biol. Stand., 84, 171–177.Google ScholarPubMed
Higuchi, M., Izumi, K. M., and Kieff, E. (2001). Epstein–Barr virus latent-infection membrane proteins are palmitoylated and raft-associated: protein 1 binds to the cytoskeleton through TNF receptor cytoplasmic factors. Proc. Natl Acad. Sci. USA, 98, 4675–4680.CrossRefGoogle ScholarPubMed
Hogan, R. J., Zhong, W., Usherwood, E. J., Cookenham, T., Roberts, A. D., and Woodland, D. L. (2001). Protection from respiratory virus infections can be mediated by antigen-specific CD4(+) T cells that persist in the lungs. J. Exp. Med., 193, 981–986.CrossRefGoogle ScholarPubMed
Ikeda, M., Ikeda, A., and Longnecker, R. (2002). Lysine-independent ubiquitination of Epstein-Barr virus LMP2A. Virology, 300, 153–159.CrossRefGoogle ScholarPubMed
Imler, J. L. (1995). Adenovirus vectors as recombinant viral vaccines. Vaccine, 13, 1143–1151.CrossRefGoogle ScholarPubMed
Jabs, W. J., Wagner, H. J., Neustock, P., Kluter, H., and Kirchner, H. (1996). Immunologic properties of Epstein–Barr virus-seronegative adults. J. Infect. Dis., 173, 1248–1251.CrossRefGoogle ScholarPubMed
Jackman, W. T., Mann, K. A., Hoffmann, H. J., and Spaete, R. R. (1999). Expression of Epstein–Barr virus gp350 as a single chain glycoprotein for an EBV subunit vaccine. Vaccine, 17, 660–668.CrossRefGoogle ScholarPubMed
Janz, A., Oezel, M., Kurzeder, C.et al. (2000). Infectious Epstein–Barr virus lacking major glycoprotein BLLF1 (gp350/220) demonstrates the existence of additional viral ligands. J. Virol., 74, 10142–10152.CrossRefGoogle ScholarPubMed
Jones, R. J., Smith, L. J., Dawson, C. W., Haigh, T., Blake, N. W., and Young, L. S. (2003). Epstein–Barr virus nuclear antigen 1 (EBNA1) induced cytotoxicity in epithelial cells is associated with EBNA1 degradation and processing. Virology, 313, 663–676.CrossRefGoogle Scholar
Jung, S., Chung, Y. K., Chang, S. H.et al. (2001). DNA-mediated immunization of glycoprotein 350 of Epstein-Barr virus induces the effective humoral and cellular immune responses against the antigen. Mol. Cells, 12, 41–49.Google ScholarPubMed
Kelly, G., Bell, A., and Rickinson, A. (2002). Epstein–Barr virus-associated Burkitt lymphomagenesis selects for downregulation of the nuclear antigen EBNA2. Nat. Med., 8, 1098–1104.CrossRefGoogle ScholarPubMed
Khanna, R., Burrows, S. R., Moss, D. J., and Silins, S. L. (1996). Peptide transporter (TAP-1 and TAP-2)-independent endogenous processing of Epstein–Barr virus (EBV) latent membrane protein 2A: implications for cytotoxic T-lymphocyte control of EBV-associated malignancies. J. Virol., 70, 5357–5362.Google ScholarPubMed
Khanna, R., Cooper, L., Kienzle, N., Moss, D. J., Burrows, S. R., and Khanna, K. K. (1997). Engagement of CD40 antigen with soluble CD40 ligand up-regulates peptide transporter expression and restores endogenous processing function in Burkitt's lymphoma cells. J. Immunol., 159, 5782–5785.Google ScholarPubMed
Khanna, R., Burrows, S. R., Nicholls, J., and Poulsen, L. M. (1998a). Identification of cytotoxic T cell epitopes within Epstein–Barr virus (EBV) oncogene latent membrane protein 1 (LMP1): evidence for HLA A2 supertype-restricted immune recognition of EBV-infected cells by LMP1-specific cytotoxic T lymphocytes. Eur. J. Immunol., 28, 451–458.3.0.CO;2-U>CrossRefGoogle Scholar
Khanna, R., Busson, P., Burrows, S. R.et al. (1998b). Molecular characterization of antigen-processing function in nasopharyngeal carcinoma (NPC): evidence for efficient presentation of Epstein–Barr virus cytotoxic T-cell epitopes by NPC cells. Cancer Res., 58, 310–314.Google Scholar
Khanna, R., Bell, S., Sherritt, M.et al. (1999a). Activation and adoptive transfer of Epstein–Barr virus-specific cytotoxic T cells in solid organ transplant patients with posttransplant lymphoproliferative disease. Proc. Natl Acad. Sci. USA, 96, 10391–10396.CrossRefGoogle Scholar
Khanna, R., Moss, D. J., and Burrows, S. R. (1999b). Vaccine strategies against Epstein–Barr virus-associated diseases: lessons from studies on cytotoxic T-cell-mediated immune regulation. Immunol. Rev., 170, 49–64.CrossRefGoogle Scholar
Khanna, R., Sherritt, M., and Burrows, S. R. (1999c). EBV structural antigens, gp350 and gp85, as targets for ex vivo virus-specific CTL during acute infectious mononucleosis: potential use of gp350/gp85 CTL epitopes for vaccine design. J. Immunol., 162, 3063–3069.Google Scholar
Khanna, R., Tellam, J., Duraiswamy, J., and Cooper, L. (2001). Immunotherapeutic strategies for EBV-associated malignancies. Trends Mol. Med., 7, 270–276.CrossRefGoogle ScholarPubMed
Khanna, R., Moss, D. J., and Gandhi, M. (2005). Application of emerging immunotherapeutic strategies for Epstein–Barr virus-associated malignancies. Nat. Clin. Pract. Oncol., 2, 138–149.CrossRefGoogle Scholar
Koutsky, L. A., Ault, K. A., Wheeler, C. M.et al. (2002). A controlled trial of a human papillomavirus type 16 vaccine. N. Engl. J. Med., 347, 1645–1651.CrossRefGoogle ScholarPubMed
Kusumoto, M., Umeda, S., Ikubo, A.et al. (2001). Phase 1 clinical trial of irradiated autologous melanoma cells adenovirally transduced with human GM-CSF gene. Cancer Immunol. Immunother., 50, 373–381.CrossRefGoogle ScholarPubMed
Lee, S. P., Thomas, W. A., Blake, N. W., and Rickinson, A. B. (1996). Transporter (TAP)-independent processing of a multiple membrane-spanning protein, the Epstein–Barr virus latent membrane protein 2. Eur. J. Immunol., 26, 1875–1883.CrossRefGoogle ScholarPubMed
Lee, S. P., Constandinou, C. M., Thomas, W. A.et al. (1998). Antigen presenting phenotype of Hodgkin Reed–Sternberg cells: analysis of the HLA class I processing pathway and the effects of interleukin-10 on Epstein–Barr virus-specific cytotoxic T-cell recognition. Blood, 92, 1020–1030.Google Scholar
Lowe, R. S., Keller, P. M., Keech, B. J.et al. (1987). Varicella-zoster virus as a live vector for the expression of foreign genes. Proc. Natl Acad. Sci. USA, 84, 3896–3900.CrossRefGoogle ScholarPubMed
McClain, M. T., Rapp, E. C., Harley, J. B., and James, J. A. (2003). Infectious mononucleosis patients temporarily recognize a unique, cross-reactive epitope of Epstein–Barr virus nuclear antigen-1. J. Med. Virol., 70, 253–257.Google Scholar
Meij, P., Vervoort, M. B., Bloemena, E.et al. (2002). Antibody responses to Epstein–Barr virus-encoded latent membrane protein-1 (LMP1) and expression of LMP1 in juvenile Hodgkin's disease. J. Med. Virol., 68, 370–377.CrossRefGoogle ScholarPubMed
Morgan, A. J. (1992). Epstein–Barr virus vaccines. Vaccine, 10, 563–571.CrossRefGoogle ScholarPubMed
Moss, D. J., Suhrbier, A., and Elliott, S. L. (1998). Candidate vaccines for Epstein–Barr virus. Br. Med. J., 317, 423–424.CrossRefGoogle ScholarPubMed
Munz, C., Bickham, K. L., Subklewe, M.et al. (2000). Human CD4(+) T lymphocytes consistently respond to the latent Epstein–Barr virus nuclear antigen EBNA1. J. Exp. Med., 191, 1649–1660.CrossRefGoogle ScholarPubMed
No, D., Yao, T. P., and Evans, R. M. (1996). Ecdysone-inducible gene expression in mammalian cells and transgenic mice. Proc. Natl Acad. Sci. USA, 93, 3346–3351.CrossRefGoogle ScholarPubMed
Ong, K. W., Wilson, A. D., Hirst, T. R., and Morgan, A. J. (2003). The B subunit of Escherichia coli heat-labile enterotoxin enhances CD8(+) cytotoxic-T-lymphocyte killing of Epstein–Barr virus-infected cell Lines. J. Virol., 77, 4298–4305.CrossRefGoogle Scholar
Pai, S., O'Sullivan, B. J., Cooper, L., Thomas, R., and Khanna, R. (2002). RelB nuclear translocation mediated by C-terminal activator regions of Epstein–Barr virus-encoded latent membrane protein 1 and its effect on antigen-presenting function in B cells. J. Virol., 76, 1914–1921.CrossRefGoogle ScholarPubMed
Paludan, C., Bickham, K., Nikiforow, S.et al. (2002). Epstein–Barr nuclear antigen 1-specific CD4(+) Th1 cells kill Burkitt's lymphoma cells. J. Immunol., 169, 1593–1603.CrossRefGoogle ScholarPubMed
Paludan, C., Schmid, D., Landthaler, M.et al. (2005). Endogenous MHC class II processing of a viral nuclear antigen after autophagy. Science, 307(5709), 593–596.CrossRefGoogle ScholarPubMed
Portis, T., and Longnecker, R. (2003). Epstein–Barr virus LMP2A interferes with global transcription factor regulation when expressed during B-lymphocyte development. J. Virol., 77, 105–114.CrossRefGoogle ScholarPubMed
Preiksaitis, J. K., Diaz-Mitoma, F., Mirzayans, F., Roberts, S., and Tyrrell, D. (1992). Quantitative oropharyngeal Epstein–Barr virus shedding in renal and cardiac transplant recipients: relationship to immunosuppressive therapy, serologic responses, and the risk of posttransplant lymphoproliferative disorder. J. Infect. Dis., 166, 986–994.CrossRefGoogle ScholarPubMed
Robertson, K. A., Usherwood, E. J., and Nash, A. A. (2001). Regression of a murine gammaherpesvirus 68-positive b-cell lymphoma mediated by CD4 T lymphocytes. J. Virol., 75, 3480–3482.CrossRefGoogle ScholarPubMed
Rooney, C. M., Bollard, C., Huls, M. H.et al. (2002). Immunotherapy for Hodgkin's disease. Ann. Hematol., 81 Suppl 2, S39–42.Google ScholarPubMed
Roskrow, M. A., Rooney, C. M., Heslop, H. E.et al. (1998). Administration of neomycin resistance gene marked EBV specific cytotoxic T-lymphocytes to patients with relapsed EBV-positive Hodgkin disease. Hum. Gene Ther., 9, 1237–1250.CrossRefGoogle ScholarPubMed
Savoldo, B., Heslop, H. E., and Rooney, C. M. (2000). The use of cytotoxic t cells for the prevention and treatment of Epstein–Barr virus induced lymphoma in transplant recipients. Leuk. Lymphoma, 39, 455–464.CrossRefGoogle ScholarPubMed
Sherritt, M. A., Bharadwaj, M., Burrows, J. M.et al. (2003). Reconstitution of the latent T-lymphocyte response to Epstein–Barr virus is coincident with long-term recovery from posttransplant lymphoma after adoptive immunotherapy. Transplantation, 75, 1556–1560.CrossRefGoogle ScholarPubMed
Shiver, J. W., Fu, T. M., Chen, L.et al. (2002). Replication-incompetent adenoviral vaccine vector elicits effective anti-immunodeficiency-virus immunity. Nature, 415, 331–335.CrossRefGoogle ScholarPubMed
Silins, S. L., Sherritt, M. A., Silleri, J. M.et al. (2001). Asymptomatic primary Epstein–Barr virus infection occurs in the absence of blood T-cell repertoire perturbations despite high levels of systemic viral load. Blood, 98, 3739–3744.CrossRefGoogle ScholarPubMed
Smith, C., Cooper, L., Burgess, M.et al. (2006). Functional Reversion of Antigen-specific CD8+ T cells from patients with Hodgkin Lymphoma following in vitro stimulation with recombinant polyepitope. J. Immunol., 177(7), 4897–4906.CrossRefGoogle ScholarPubMed
Stewart, J. P., Janjua, N. J., Pepper, S. D.et al. (1996). Identification and characterization of murine gammaherpesvirus 68 gp150: a virion membrane glycoprotein. J. Virol., 70, 3528–3535.Google ScholarPubMed
Stewart, J. P., Micali, N., Usherwood, E. J., Bonina, L., and Nash, A. A. (1999). Murine gamma-herpesvirus 68 glycoprotein 150 protects against virus-induced mononucleosis: a model system for gamma-herpesvirus vaccination. Vaccine, 17, 152–157.CrossRefGoogle ScholarPubMed
Stittelaar, K. J., Kuiken, T., Swart, R. L.et al. (2001). Safety of modified vaccinia virus Ankara (MVA) in immune-suppressed macaques. Vaccine, 19, 3700–3709.CrossRefGoogle ScholarPubMed
Straathof, K. C., Bollard, C. M., Popat, U.et al. (2005). Treatment of nasopharyngeal carcinoma with Epstein–Barr virus-specfic T lymphocytes. Blood, 105(5), 1898–1904.CrossRefGoogle Scholar
Sullivan, N. J., Sanchez, A., Rollin, P. E., Yang, Z. Y., and Nabel, G. J. (2000). Development of a preventive vaccine for Ebola virus infection in primates. Nature, 408, 605–609.Google ScholarPubMed
Tellam, J., Sherritt, M., Thomson, S.et al. (2001). Targeting of EBNA1 for rapid intracellular degradation overrides the inhibitory effects of the Gly–Ala repeat domain and restores CD8+ T cell recognition. J. Biol. Chem., 276, 33353–33360.CrossRefGoogle ScholarPubMed
Tellam, J., Connolly, G., Green, K. J.et al. (2004). Endogenous presentation of CD8+ T cell epitopes from Epstein–Barr–virus-encoded nuclear antigen 1. J. Exp. Med., 199(10), 1421–1431.CrossRefGoogle ScholarPubMed
Thomson, S. A., Elliott, S. L., Sherritt, M. A.et al. (1996). Recombinant polyepitope vaccines for the delivery of multiple CD8 cytotoxic T cell epitopes. J. Immunol., 157, 822–826.Google ScholarPubMed
Thomson, S. A., Burrows, S. R., Misko, I. S., Moss, D. J., Coupar, B. E., and Khanna, R. (1998). Targeting a polyepitope protein incorporating multiple class II-restricted viral epitopes to the secretory/endocytic pathway facilitates immune recognition by CD4+ cytotoxic T lymphocytes: a novel approach to vaccine design. J. Virol., 72, 2246–2252.Google ScholarPubMed
Thorley-Lawson, A. D. (2001). Epstein–Barr virus: exploiting the immune system. Nat. Rev. Immunol., 1, 75–82.CrossRefGoogle ScholarPubMed
Tibbetts, S. A., , L. J., Berkel, V., McClellan, J. S., Jacoby, M. A., Kapadia, S. B., Speck, S. H., Virgin, H. W. 4th. (2003). Establishment and maintenance of gammaherpesvirus latency are independent of infective dose and route of infection. J. Virol. 77, 7696–7701.CrossRefGoogle ScholarPubMed
Tugizov, S. M., Berline, J. W., and Palefsky, J. M. (2003). Epstein–Barr virus infection of polarized tongue and nasopharyngeal epithelial cells. Nat. Med., 9, 307–314.CrossRefGoogle ScholarPubMed
Uda, H., Mima, T., Yamaguchi, N.et al. (2002). Expansion of a CD28-intermediate subset among CD8 T cells in patients with infectious mononucleosis. J. Virol., 76, 6602–6608.CrossRefGoogle ScholarPubMed
Usherwood, E. J., Ward, K. A., Blackman, M. A., Stewart, J. P., and Woodland, D. L. (2001). Latent antigen vaccination in a model gammaherpesvirus infection. J. Virol., 75, 8283–8288.CrossRefGoogle Scholar
Walling, D. M., Brown, A. L., Etienne, W., Keitel, W. A., and Ling, P. D. (2003). Multiple Epstein–Barr virus infections in healthy individuals. J. Virol., 77, 6546–6550.CrossRefGoogle ScholarPubMed
Williams, N. A., Hirst, T. R., and Nashar, T. O. (1999). Immune modulation by the cholera-like enterotoxins: from adjuvant to therapeutic. Immunol. Today, 20, 95–101.CrossRefGoogle ScholarPubMed
Wilson, A. D., and Morgan, A. J. (2002). Primary immune responses by cord blood CD4(+) T cells and NK cells inhibit Epstein–Barr virus B-cell transformation in vitro. J. Virol., 76, 5071–5081.CrossRefGoogle ScholarPubMed
Wilson, A. D., Shooshstari, M., Finerty, S., Watkins, P., and Morgan, A. J. (1996). Virus-specific cytotoxic T cell responses are associated with immunity of the cottontop tamarin to Epstein–Barr virus (EBV). Clin. Exp. Immunol., 103, 199–205.CrossRefGoogle Scholar
Wilson, A. D., Lovgren-Bengtsson, K., Villacres-Ericsson, M., Morein, B., and Morgan, A. J. (1999). The major Epstein–Barr virus (EBV) envelope glycoprotein gp340 when incorporated into Iscoms primes cytotoxic T-cell responses directed against EBV lymphoblastoid cell lines. Vaccine, 17, 1282–1290.CrossRefGoogle ScholarPubMed
Yin, Y., Manoury, B., and Fähraeus, R. (2003). Self-inhibition of synthesis and antigen presentation by Epstein–Barr virus-encoded EBNA1. Science, 301, 1371–1374.CrossRefGoogle ScholarPubMed
Yotnda, P., Onishi, H., Heslop, H. E.et al. (2001). Efficient infection of primitive hematopoietic stem cells by modified adenovirus. Gene Ther., 8, 930–937.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×