Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-07-06T09:22:19.486Z Has data issue: false hasContentIssue false

2 - Molecular anatomy of the node of Ranvier: newer concepts

from Part I - Physiology and pathophysiology of nerve fibres

Published online by Cambridge University Press:  04 August 2010

S. G. Waxman
Affiliation:
Department of Neurology, Yale University School of Medicine, New Haven, and Center for Neuroscience Research, VA Hospital, West Haven, Connecticut, USA
Hugh Bostock
Affiliation:
Institute of Neurology, London
P. A. Kirkwood
Affiliation:
Institute of Neurology, London
A. H. Pullen
Affiliation:
Institute of Neurology, London
Get access

Summary

An important chapter in neuroscience was opened up by Tom Sears and his colleagues (see e.g. Rasminsky & Sears, 1972; Bostock & Sears, 1976, 1978) when they carried out their beautiful analyses, using the external longitudinal current recording method, of nodal and internodal transmembrane currents in myelinated and demyelinated ventral root fibres, by implication beginning to define the molecular anatomy of the node of Ranvier. Since that time, the sequestration of voltage-sensitive Na+ channels in the axon membrane at the node has been further examined using a variety of techniques including saxitoxin-binding (Ritchie & Rogart, 1977), cytochemical methods (Quick & Waxman, 1977a), freeze-fracture (Rosenbluth, 1976), immuno-electron microscopy (Black et al., 1989), nodal voltage clamp (Chiu & Ritchie, 1981, 1982; Neumcke & Stämpfli, 1982) and single channel patch clamp (Vogel & Schwarz, 1995); and the expression of various types of K+ channels in myelinated axons has been studied using electrophysiological and pharmacological methods (Waxman & Ritchie, 1993; Vogel & Schwarz, 1994). This chapter will discuss some of the newer aspects of the molecular anatomy of the mammalian node of Ranvier, with emphasis on Na+ channels, the Na+–Ca2+ exchanger, and the diffusion barrier that accumulates intra-axonal Na+ in a limited space below the axon membrane.

Type
Chapter
Information
The Neurobiology of Disease
Contributions from Neuroscience to Clinical Neurology
, pp. 13 - 28
Publisher: Cambridge University Press
Print publication year: 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×