Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-c654p Total loading time: 0 Render date: 2024-07-28T16:43:53.891Z Has data issue: false hasContentIssue false

10 - Conduction properties of central demyelinated axons: the generation of symptoms in demyelinating disease

from Part I - Physiology and pathophysiology of nerve fibres

Published online by Cambridge University Press:  04 August 2010

K. J. Smith
Affiliation:
Department of Neurology and Division of Anatomy and Cell Biology, United Medical and Dental Schools of Guy's and St Thomas' Hospitals, London, UK
Hugh Bostock
Affiliation:
Institute of Neurology, London
P. A. Kirkwood
Affiliation:
Institute of Neurology, London
A. H. Pullen
Affiliation:
Institute of Neurology, London
Get access

Summary

The loss of myelin from central axons is a prominent feature of the lesion of multiple sclerosis (MS), and a direct cause of the several conduction deficits which lead, in turn, to the symptoms associated with central demyelinating disease. This review of the conduction deficits will focus on experimentally demyelinated central axons, since in experimental lesions it is usually possible to determine the morphology of the axons with some certainty, whereas this is rarely possible in human demyelinating disease.

The conduction properties of central axons passing through a region of demyelination were reliably described for the first time by McDonald and Sears in their landmark studies of 1969 and 1970 (McDonald & Sears, 1969b, 1970a, b). These authors found that conduction along axons passing through long experimental demyelinating lesions (>5 mm in length) was often blocked at the site of the lesion, but that conduction could sometimes continue if the lesions were small. Where conduction occurred it was usually abnormal, and proceeded with a locally reduced velocity and a prolonged refractory period of transmission (RPT); the axons were also incapable of conducting trains of impulses at high frequency. These conduction abnormalities remain the hallmark of conduction in axons passing through demyelinating lesions in either the central or peripheral nervous systems.

Conduction block

Conduction block is believed to be the dominant cause of the most distressing symptoms of MS, such as paralysis, blindness and numbness (McDonald, 1975, 1986; Halliday & McDonald, 1977; Ulrich & Groebke-Lorenz, 1983; Waxman, 1988), and it was also the first conduction abnormality to be described in experimentally demyelinated central axons (McDonald & Sears, 1969a) (Fig. 10.1).

Type
Chapter
Information
The Neurobiology of Disease
Contributions from Neuroscience to Clinical Neurology
, pp. 95 - 117
Publisher: Cambridge University Press
Print publication year: 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×